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Аннотация. Линейная регрессия остается одним из базовых инструментов анализа данных, 

однако ее устойчивость резко снижается в присутствии выбросов и шумов, что приводит к 

искажению коэффициентов и снижению качества прогноза. Классические эвристические алгоритмы 

оптимизации, такие как Particle Swarm Optimization (PSO) и Jaya, показывают хорошие результаты 

на гладких функциях потерь, но оказываются чувствительными к выбросам при применении 

стандартной среднеквадратичной ошибки (MSE). Это создает потребность в разработке простых, 

но робастных модификаций, которые сохраняли бы глобальные поисковые свойства, не усложняя 

структуру базового алгоритма. 

Цель исследования. Разработать и экспериментально оценить робастную модификацию PSO 

(PSO-Robust), обеспечивающую устойчивость линейной регрессии к выбросам без усложнения 

основного алгоритма и без введения дополнительных гиперпараметров. 

Методы исследования. Алгоритмическая идея: сохранить стандартные уравнения движения 

PSO; вмешательство только в функцию пригодности. Вместо среднеквадратичной функции потерь 

используются M-средние на базе функции Хьюбера с адаптивными весами, уменьшающими вклад 

выбросов. Вычислительные эксперименты на синтетических данных (15  % и 25 % выбросов) 

выполнены при одинаковых гиперпараметрах для всех сравниваемых алгоритмов и 30 независимых 

перезапусках. Оценка по средним и медианным тестовым ошибкам, а также по разбросу (дисперсия, 

межквартильный размах). Визуальный анализ – boxplot распределений ошибок и линии регрессии. 

Результаты. PSO-Robust устойчиво превосходит классический PSO и Jaya по средним и 

медианным тестовым ошибкам. Наблюдается меньший разброс результатов (дисперсия). Визуальный 

анализ подтверждает сниженную чувствительность к выбросам (более компактные boxplot, более 

адекватные регрессионные линии). 

Заключение. Модификация PSO-Robust демонстрирует стабильное превосходство над исходными 

алгоритмами по точности и устойчивости, обеспечивая более компактные boxplot и менее 

искаженные регрессионные линии. Предложенный подход сочетает простоту реализации с робастностью, 

повышая надежность регрессионных моделей в условиях неоднородных данных. Перспективы 

развития включают расширение метода на многомерные и нелинейные модели, а также исследование 

альтернативных робастных функций потерь. 
 

Ключевые слова: эвристические алгоритмы, Particle Swarm Optimization (PSO), Jaya, выбросы, 

робастность, линейная регрессия, М-средние, функция Хьюбера, оптимизация 

 
Поступила  14.10.2025,         одобрена  после  рецензирования  01.11.2025,        принята  к  публикации  17.11.2025 

 
Для цитирования. Казакова Е. М. Робастная модификация PSO на основе M-средних для решения задач 

линейной регрессии // Известия Кабардино-Балкарского научного центра РАН. 2025. Т. 27. № 6. С. 109–116. 

DOI: 10.35330/1991-6639-2025-27-6-109-116 

 

 
©   Казакова Е. М., 2025 



INFORMATICS AND INFORMATION PROCESSES 
 

 

110                                               News of the Kabardino-Balkarian Scientific Center of RAS   Vol. 27   No. 6   2025 

MSC: 68Т20                                                                                                                           Original article                                                                                                        
 

Robust modification of PSO  

algorithm based on M-means for solving linear regression 
 

E.M. Kazakova 
 

Institute of Applied Mathematics and Automation –  

branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences 

89 A, Shortanov street, Nalchik, 360000, Russia  

 

Abstract. Linear regression is a fundamental data analysis tool, but it can be greatly affected by outliers 

and noise, which can lead to distorted coefficients and a reduction in forecast quality. Classical heuristic 

PSO (Particle Swarm Optimization) and Jaya algorithms demonstrate good performance on smooth loss 

functions, but they are sensitive to outliers when applying the standard mean squared error (MSE). This 

creates a need for simple but effective modifications that would maintain global search capabilities without 

complicating the basic algorithm's structure. 

Aim. The study is to develop and subject to experimental evaluation modification of  PSO algorithm (PSO-

Robust) that ensures the robustness of linear regression to outliers without complicating the core algorithm 

or introducing additional hyperparameters. 

Methods. Algorithmic idea: to keep the standard PSO equations of motion; interfering only with the 

fitness function. Instead of the root mean squire loss, an M-means function based on the Huber function is 

used, with adaptive weights that reduce the contribution of outliers. Experiments have been conducted on 

synthetic data with 15 % and 25 % outliers, with the same hyperparameters for all compared algorithms 

and 30 independent runs. Evaluation by mean and median test errors, as well as by dispersion 

estimation (variance, interquartile range). Visual analysis – boxplot of error distributions and regression 

lines. Evaluation by mean and median test errors, as well as dispersion (variance, interquartile range). 

Visual analysis – boxplot of error distributions and regression lines. 

Results. PSO-Robust consistently outperforms classic PSO and Jaya in terms of mean and median test 

errors. The results show a smaller spread (variance). The visual analysis confirms reduced sensitivity to 

outliers (more compact box plots, more consistent regression lines). 

Conclusion. The PSO-Robust modification demonstrates consistent superiority over the original 

algorithms in accuracy and robustness, producing more compact boxplots and less distorted regression 

lines. The proposed approach combines simplicity of implementation and robustness, increasing the 

reliability of regression in the case with heterogeneous data. Future developments include extending the 

method to multivariate and nonlinear models, as well as exploring alternative robust loss functions. 
 

Keywords: heuristic algorithms, Particle Swarm Optimization (PSO), Jaya, outliers, robustness, linear 

regression, M-means, Huber function, optimization 
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ВВЕДЕНИЕ 

 

В последние десятилетия задача глобальной оптимизации стала ключевой в различных 

областях науки и техники – от машиностроения и биоинформатики до искусственного ин-

теллекта и управления сложными системами. При этом многие практические задачи харак-

теризуются высокой размерностью, нелинейностью, неявностью градиентов и наличием 

большого количества локальных минимумов. Такие условия делают градиентные методы 

малоприменимыми и стимулируют развитие метаэвристических подходов, способных эф-

фективно исследовать сложные поисковые пространства. 
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Метаэвристический алгоритм представляет собой приближенный метод решения задач, 
основанный на эмпирических правилах, интуиции или наблюдении за естественными про-
цессами, без строгих математических гарантий нахождения глобального оптимума. Основ-
ной целью таких алгоритмов является нахождение достаточно хорошего решения за разум-
ное время, особенно в условиях ограниченных вычислительных ресурсов. 

Одним из широко применяемых метаэвристических методов является алгоритм роя ча-
стиц (Particle Swarm Optimization, PSO), предложенный Кеннеди и Эберхартом в 1995 году [1]. 
Он имитирует коллективное поведение особей (частиц), каждая из которых адаптирует 
свою траекторию движения, ориентируясь как на личный, так и на глобальный опыт. Про-
стота реализации, гибкость и способность быстро находить приемлемые решения сделали 
PSO популярным инструментом в решении непрерывных и дискретных задач оптимиза-
ции. Наряду с ним активно развивается и алгоритм Jaya, предложенный Рао [2], основным 
принципом которого является стремление к наилучшему решению и уход от наихудшего, 
без использования дополнительных параметров управления. 

Метод M‑средних представляет собой класс методов в робастной статистике, предна-
значенных для минимизации влияния выбросов на оценки параметров модели. В отличие 
от классических методов (например, метода наименьших квадратов, МНК), M-средние за-
меняют квадратичную функцию потерь на робастную функцию  , которая менее чувстви-
тельна к большим отклонениям (например, функция Хьюбера, Тьюки и т.д.) [3, 4]. 

Несмотря на широкую распространенность PSO алгоритм страдает рядом ограничений, 
включая преждевременную сходимость, зависимость от начальных условий, неустойчи-
вость на многомодальных функциях и отсутствие адаптивного механизма, позволяющего 
учитывать «важность» или «вклад» каждой отдельной особи в общую поисковую страте-
гию. В литературе представлены многочисленные модификации, направленные на повы-
шение эффективности PSO [5–9].  

Одним из направлений, которое до сих пор остается недостаточно исследованным, яв-

ляется взвешивание вклада каждой частицы или агента в процессе эволюции решения. В 

классическом PSO каждая частица имеет равный вес при выборе лучшего решения. Однако 

стандартный PSO чувствителен к выбросам и шуму в данных, поскольку использует про-

стое среднее арифметическое ошибок, что может искажать оценку фитнесс-функции и при-

водить к неустойчивым решениям. Для повышения робастности предлагается модифика-

ция, интегрирующая принципы робастной статистики, в частности, M-средние. Робастная 

версия PSO заменяет стандартную фитнесс-функцию на взвешенную оценку, где веса адап-

тивно уменьшают влияние выбросов, основываясь на распределении остатков ошибок. 
 

Алгоритм роя частиц (PSO) 

Алгоритм PSO решает задачу оптимизации  
 

min ( )
Dx R
f x


, 

 

используя роевую динамику. Пусть N – размер роя. На каждой итерации 0,1,2,t =  состо-

яние частицы {1, , }i N   задается вектором положения 𝑥𝑖
𝑡 ∈ ℝ𝐷 и скоростью 𝑣𝑖

𝑡 ∈ ℝ𝐷. 

Для каждой частицы вычисляются локально лучшее найденное положение 
 

 ( ),t
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и глобально лучшее положение роя 
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Инициализация: выбираются 0

ix  (например, случайно в заданной области поиска), ско-

рости полагаются 0 0iv =  (или малыми случайными), вычисляются 0( )if x , после чего фор-

мируются 0 0

i ip x=  и 0 0 0

1{ , , }Ng x x   как текущие минимизаторы. 

Обновление на шаге 1t t→ +  задается рекуррентными соотношениями 

 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡  + 𝑐1𝑟1,𝑖
𝑡+1 ⊙ (𝑝𝑖

𝑡 − 𝑥𝑖
𝑡) + 𝑐2𝑟2,𝑖

𝑡+1 ⊙ (g𝑡 − 𝑥𝑖
𝑡) 

  

 1 1,t t t

i i ix x v+ += +    
 

где 0  – инерционный вес, 1 2, 0c c   – когнитивный и социальный коэффициенты соот-

ветственно, ⊙ обозначает покомпонентное умножение, а векторы 
1 1

1, 2,, [0,1]t t D

i ir r+ +   состоят 

из независимых, равномерно распределенных случайных компонент (можно также исполь-

зовать скаляры 1 1

1, 2,, ~ [0,1]t t

i ir r+ +  для всех координат). 
 

Алгоритм Jaya 

Алгоритм Jaya является простым методом популяционной оптимизации. Обновление реше-

ния определяется как движение в сторону лучшего кандидата и одновременно – от худшего: 
 

 ( ) ( ) ( )( ) ( )( )1 21      | | | |  j j j jx t x t r best x t r worst x t+ = + − + − ,   

 

где best, worst – соответственно лучшие и худшие решения текущей популяции, 1 2,r r  – слу-

чайные числа. 
 

Робастный алгоритм PSO 

В контексте задач оптимизации, таких как линейная регрессия с шумными данными, 

стандартный PSO использует функцию стоимости на основе среднего значения потерь по 

набору данных 
1{( , )}ni i ix y == : 

 
1

1
ˆ( ) ( ),

n

j i ij

i

f L y y
n =

= −x  

 

где ˆ
ij j i jy a x b= +  (для 2D = , ( , )j j ja b=x ), а ( )L   – функция потерь (например, функция 

Хьюбера [10]): 

                                                 

21
, | | ,

2
( )

1
(| | ), | | ,

2

r r

L r

r r




= 
 − 




  

                                               (1)  

 

с параметром 0 . Однако в присутствии выбросов в данных среднее значение функции 

потерь чувствительно к аномалиям, что может привести к неустойчивости оптимизации. 

Для повышения робастности предлагается модификация PSO, основанная на принципах 

M-средних в робастной статистике. Вместо обычного среднего функция стоимости вычис-

ляется как взвешенное среднее потерь, где веса адаптивно снижают влияние выбросов. Для 

каждой частицы j  на итерации t : 

1. Вычисляются невязки ˆ
ij i ijr y y= −  для всех 1, ,i n=  . 

2. Оценивается робастное положение ju  для распределения остатков 1{ }nij ir =  как решение 

задачи минимизации: 
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1

( ),
n

j u ij

i

arg iu m n r u
=

= −  

 

где 2 2( )r r= + −    – гладкая аппроксимация модуля с малым 0  для численной 

устойчивости. Это соответствует робастной оценке, близкой к медиане, устойчивой к вы-

бросам (в отличие от среднего). 

Решение 
*u  находится итеративно с помощью градиентного спуска: 

 

 
1

1

( ),
n

k k k

j j ij j

i

u uu r+

=

= − −   

где 
2 2

( )
r

r
r r


= =
 +





, 0.001=  – шаг обучения, n – количество итераций.  

3. Вычисляются нормализованные веса 
ijw  для каждого остатка на основе второй про-

изводной ( )r : 

 
2 2 3/2

( ) ,
( )

r
r

 =
+





 

 

 

*

*

1

( )
.

( )

ij

ij n

kj

k

r u
w

r u
=

 −
=

 −





 

 

Веса 
ijw  близки к 1/ n  для типичных невязок (малых 

*| |ijr u− ) и уменьшаются до нуля 

для выбросов (больших 
*| |ijr u− ), обеспечивая низкие веса для выбросов. Условие норми-

ровки 1ij

i

w =  выполняется автоматически. 

4. Робастная функция стоимости для частицы j : 
 

 
1 1

1 1
ˆ( ) ( ).

n n

j ij ij ij i ij

i i

f w L r w L y y
n n= =

= = −   

 

Аналогично вычисляются p

jf  для локального лучшего положения *j
p . Обновление 

локального лучшего: если p

j jf f , то 
j jp x . Глобальное лучшее g выбирается как *j

p  

с минимальным *

p

j
f  среди всех j . 

Такая модификация интегрирует робастность на уровне оценки функции стоимости, де-

лая PSO устойчивым к шумам и выбросам в данных, без изменения динамики обновления 

скоростей и позиций. Это особенно полезно для задач регрессии, где набор данных может 

содержать выбросы, и сочетает глобальный поиск PSO с локальной робастностью M-сред-

них. Процесс повторяется до сходимости или фиксированного числа итераций. 

Вычислительные эксперименты 

Для иллюстрации робастности алгоритмов была использована задача линейной регрес-

сии, содержащая выбросы. 

В эксперименте использовались искусственно сгенерированные наборы данных для задачи 

регрессии (№ 1, № 2). Данные состоят из пар (X, Y), где: X – независимая переменная (скаляр-

ный входной признак); Y – зависимая переменная. В наборах данных присутствуют выбросы 

с различными распределениями: в задаче № 1 – 15 % выбросов; № 2 – 25 % выбросов.  
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Тренировочный набор отображен синими точками на рисунке 1. Он используется для 
подбора параметров моделей. Тестовый набор отображен оранжевыми точками и приме-
няется для оценки качества работы моделей.  

Для всех алгоритмов использовались одинаковые гиперпараметры: размер роя – 10 

частиц, число итераций – 150, число независимых запусков – 30, параметры PSO: 

0,9, 1,5, 0,25  = = = . В качестве функции потерь используется функция Хьюбера (1). 

Сравнение эффективности работы алгоритмов проводилось на тестовом наборе данных по 
следующим метрикам: среднее значение ошибок по 30 независимым запускам, стандартное 
отклонение значений (устойчивость алгоритма), минимальное значение функции ошибок. В 
таблице 1 представлены полученные значения метрик на тестовом наборе данных. 

 

Таблица 1. Метрики на тестовом наборе данных  / Table 1. Metrics on the test dataset 
 

Алгоритм Набор данных № Среднее Медиана Дисперсия Минимум 

PSO 
1 1,9355 1,7133 1,2986 0,0023 

2 9,266 8,9395 6,0042 0,5504 

PSO_Robust 
1 0,7899 0,5752 0,6891 0,0134 

2 2,8898 2,0534 2,4763 0,0168 

Jaya 
1 1,9353 1,7131 1,2986 0,002 

2 9,2654 8,9385 6,0042 0,5517 
 

Как видно из таблицы, наименьшее среднее значение ошибки на обоих наборах данных у 
PSO-Robust, что говорит о том, что в среднем этот метод решал задачу лучше остальных. PSO 
и Jaya показывают практически одинаковую более высокую среднюю ошибку. 

Медиана у PSO-Robust тоже существенно ниже, чем у двух других алгоритмов, что под-
тверждает его преимущество в большинстве запусков. Алгоритм PSO-Robust имеет мень-
ший разброс значений ошибки по сравнению с PSO и Jaya, следовательно, он дает более 
стабильные результаты. 

На рисунке 1 прогноз модели c PSO (синяя линия) проходит примерно посередине обоих 
кластеров, не выявляя линейную зависимость точек без выбросов. Дает высокие ошибки на те-
стовом наборе (подтверждается высокими средними ошибками из табл. 1). Прогнозная модель 
c Jaya (зеленая линия) почти совпадает с линией PSO и тоже не отражает зависимость данных.  

PSO-Robust явно лучше подстраивается под тестовые данные и улавливает тенденцию в 
кластере с тестовыми точками, что подтверждается его более низкой медианой и средней 
ошибкой. PSO и особенно Jaya не смогли адекватно учесть структуру данных, что привело 
к высоким ошибкам. 

 

 
Рис. 1. Примеры восстановления линейной регрессии алгоритмами PSO, Jaya, PSO-Robust 

 

Fig. 1. Examples of linear regression recovery using PSO, Jaya, and PSO-Robust algorithms 
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На рисунке 2 изображены графики boxplot распределения ошибок на тестовых наборах 

данных для каждого алгоритма: Ось Y – ошибка на тестовых данных; Ось X – алгоритмы. 

Оранжевая линия в каждом боксе – медиана распределения ошибок. Концы «усов» пока-

зывают диапазон значений (без выбросов), кружки – выбросы. 

PSO-Robust имеет медиану ошибки ниже и бокс расположен ниже на графике – алгоритм 

в целом дает меньшие ошибки. У PSO и Jaya медианы практически совпадают и лежат 

выше – результаты хуже. Диапазон (высота бокса и длина «усов») у PSO-Robust меньше – 

он работает стабильнее, тогда как PSO и Jaya показывают более изменчивое качество. 
 

 
 

Рис. 2. Распределение значений ошибок после 30 независимых запусков 
 

Fig. 2. Distribution of error values after 30 independent runs 

 
ЗАКЛЮЧЕНИЕ 

 

Результаты экспериментов показали, что выбор оптимизационного алгоритма суще-

ственно влияет на качество регрессионной модели при работе с данными с выбросами. 

Среди протестированных методов наилучшие результаты продемонстрировал алгоритм 

PSO-Robust, обеспечивший наименьшие значения средней и медианной ошибки на тесто-

вом наборе, а также более стабильное поведение (меньшее стандартное отклонение) по 

сравнению с классическим PSO и алгоритмом Jaya. 

Анализ графиков boxplot распределения ошибок подтвердил устойчивость PSO-Robust и его 

способность точнее описывать зависимость в области тестовых данных. Графический анализ ре-

грессионных зависимостей показал, что PSO и Jaya неадекватно аппроксимируют кластер с те-

стовыми наблюдениями, тогда как PSO-Robust лучше отражает локальную структуру данных. 

Таким образом, применение робастного варианта PSO позволяет повысить точность и 

надежность построения регрессионных моделей в задачах с неоднородным распределением 

данных. Но есть ограничения, связанные с фокусом на линейной регрессии и синтетических 

наборах; дальнейшие исследования включают расширение на многомерные и нелинейные мо-

дели, альтернативные робастные функции потерь и автонастройку параметров робастности. 
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