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Аннотация. В статье рассматривается задача автоматического определения дефектов дорожного 
покрытия с использованием мультимодальных нейросетевых методов. 

Цель исследования. Разработка и экспериментальная оценка мультимодального нейросетевого 
метода автоматического определения дефектов дорожного покрытия с использованием совмещенного 
анализа визуальных и трехмерных данных. 

Методы исследования. Для детекции областей повреждений применялась модель Faster R-CNN, 
для классификации визуальных фрагментов – Swin Transformer Small, а для анализа геометрии 
поверхности по данным лидара – модель PointNet. Предсказания от каждой модальности объединялись 
методом взвешенного суммирования (веса 0.1, 0.6 и 0.4 соответственно). Обучение и тестирование 
проводились на мультимодальном наборе данных RSRD, включающем RGB-изображения и облака 
точек, полученные в различных дорожных и погодных условиях. 

Результаты. Экспериментальные исследования показали, что мультимодальный подход 
обеспечивает прирост точности классификации до 95.57 %, а также значительное улучшение 
метрик детекции дефектов. Для класса «выбоины» полнота увеличилась на 27 %, а F1-score – 
на 20 % по сравнению с использованием отдельных моделей.  

Выводы. Разработанная архитектура демонстрирует высокую устойчивость и точность в 
задачах анализа дорожного полотна. Полученные результаты подтверждают эффективность интеграции 
визуальных и пространственных данных и целесообразность применения мультимодальных 
методов для построения интеллектуальных систем мониторинга дорожной инфраструктуры. 
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Aim. To develop and experimentally evaluate a multimodal neural network method for automatically 

detecting pavement defects using combined analysis of visual and three-dimensional data. 

Methods. The Faster R-CNN model is used for detecting damage areas, the Swin Transformer Small 

model for classifying visual fragments, and the PointNet model for analyzing surface geometry based 

on lidar data. The predictions from each modality are combined by weighted summation (weights 0.1, 

0.6, and 0.4, respectively). The training and testing are conducted on the RSRD multimodal dataset, 

which includes RGB images and point clouds obtained in various road and weather conditions. 

Results. Experimental studies have shown that the multimodal approach provides an increase in 

classification accuracy of up to 95.57%, as well as a significant improvement in defect detection metrics. 

For the pothole class, completeness increased by 27% and F1-score by 20% compared to using 

individual models.  

Conclusions. The developed architecture demonstrates high stability and accuracy in the tasks of  

analyzing the roadway. The results obtained confirm the effectiveness of the integration of visual and 

spatial data and the expediency of using multimodal methods to build intelligent monitoring systems for 

road infrastructure. 
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ВВЕДЕНИЕ 

 

Своевременное выявление и классификация дефектов дорожного покрытия, таких как 

трещины и выбоины, являются критически важной задачей для обеспечения безопасности 

дорожного движения и эффективного управления транспортной инфраструктурой [1]. 

Традиционные методы мониторинга часто требуют значительных человеческих ресурсов 

и не могут обеспечить непрерывный масштабируемый анализ. Современные достижения 

в области компьютерного зрения и глубокого обучения открывают новые возможности 

для автоматизации этого процесса. 
Однако системы, основанные исключительно на обработке двумерных изображений, 

сталкиваются с рядом ограничений, включая чувствительность к изменению освещенно-
сти, погодным условиям и сложность текстурных особенностей дорожного полотна от ре-
альных дефектов. В этой связи перспективным направлением является использование 
мультимодальных подходов, которые комбинируют данные из различных источников. 

Определение качества дорожного покрытия с помощью мультимодальных нейросе-
тевых методов начинается с выбора правильных сенсорных технологий и организации 
процесса сбора данных. Эффективность всей последующей системы напрямую зависит 
от качества, разнообразия и репрезентативности исходных данных. Современные ис-
следования демонстрируют широкий спектр доступных датчиков, каждый из которых 
обладает уникальными преимуществами и недостатками, что делает их применение 
контекстуально зависимым. 

Основным источником данных является визуальная информация, получаемая с различ-

ных типов камер [2]. Камеры высокого разрешения обеспечивают высокую точность де-

текции дефектов, достигая 98,95 % в идеальных условиях, однако они уязвимы к погодным 

условиям, таким как дождь или туман, и плохому освещению. Для решения этой проблемы 

исследователи используют различные подходы. Например, в одном из проектов [3] приме-

нялись тепловизионные камеры, которые показали точность 97 % при классификации де-

фектов, что делает их перспективными для использования в условиях низкой видимости. 
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Другой подход заключается в использовании стереокамер [4, 5], которые позволяют полу-

чать плотные 3D-облака точек с точностью реконструкции более 3 мм, что полезно для 

оценки объема выбоин [6]. 
Второй важной модальностью являются данные, получаемые с инерциальных измери-

тельных блоков (IMU), содержащих акселерометры и гироскопы. Эти сенсоры регистри-

руют вибрацию, создаваемую проездом над дефектами дорожного покрытия [7, 8]. Пре-
имущество этого метода заключается в его независимости от условий освещения, что поз-
воляет проводить обследования в любое время суток. Однако вибрационные методы чув-

ствительны к шуму от самого транспортного средства и могут обнаруживать дефекты 
только при прямом проезде по ним [9]. Для повышения точности данных часто применя-
ются алгоритмы предварительной обработки, такие как фильтрация Баттерворта для по-

давления помех [10] и использование нескольких датчиков для сглаживания сигнала [11]. 
В качестве примера можно привести систему RoadSense, которая использует датчик 
MPU-6050 и достигает точности 99,07 % при обнаружении выбоин [12]. 

Третьей все более популярной модальностью становится трехмерное сканирование с 
помощью LiDAR и радаров. LiDAR обеспечивает высокоточную 3D-реконструкцию до-
рожного полотна, позволяя точно измерять глубину и площадь выбоин [13, 14]. Однако 

данные LiDAR и облака точек требуют значительных вычислительных ресурсов для об-
работки [15]. Радары, особенно миллиметроволныe (mmWave), представляют собой пер-
спективную альтернативу. Они работают в диапазоне 76–81 ГГц, что делает их устойчи-

выми к дождю, туману и темноте, превосходя по этому параметру камеры и LiDAR. Про-
тотип mmWave-радара, разработанный в Университете Аризоны, успешно сегментирует 
облако точек на объекты, такие как пешеходы и автомобили, что указывает на потенциал 

его применения для анализа дорожной обстановки и состояния покрытия. В одном из ис-
следований было показано, что даже мобильный лазерный сканер (LiDAR) с низкой плот-
ностью точек может эффективно обнаруживать выбоины при оптимальной плотности.  

В некоторых исследованиях экспериментируют с менее очевидными модальностями, 

такими как звук [17]. В работе по оценке состояния гравийных дорог был предложен ме-

тод слияния визуальных и аудиальных данных, где аудиозаписи преобразовывались в 

спектрограммы. Этот подход показал высокую производительность, особенно при позд-

нем слиянии признаков с использованием логических операций OR и AND, достигнув 

точности 97 %. Это открывает новые горизонты для создания робастных систем, способ-

ных работать в сложных условиях. 

Выбор нейросетевой архитектуры является центральным элементом в разработке си-

стем для определения качества дорожного покрытия. Исследовательское сообщество ак-

тивно экспериментирует с различными моделями, адаптируя существующие архитектуры 

для задач компьютерного зрения и предлагая собственные решения. Основой большин-

ства современных систем служат сверточные нейронные сети (CNN), которые демонстри-

руют высокую эффективность в задачах классификации, обнаружения объектов и семан-

тической сегментации [18]. 

Для задачи детекции объектов, такой как поиск трещин и выбоин, наиболее популяр-

ными являются архитектуры семейства YOLO (You Only Look Once). Модификации 

YOLOv3/v5/v7/v8/v10 регулярно появляются в научных публикациях благодаря их высо-

кому соотношению скорости и точности [19, 20]. Например, модель SCB-AF-Detector на 

основе YOLOv5s достигла 90,8 % точности на датасете IRRDD, а YOLOv7 была примене-

на для обнаружения дефектов с точностью 94,5 % [21]. Для повышения эффективности 

этих моделей авторы разрабатывают специализированные модификации бэкбона (напри-

мер, SCB-Darknet53 с интегрированными трансформерами) и головного блока (AFPN), 

что позволяет улучшить извлечение признаков и повысить общую производительность. 

Другие популярные архитектуры включают Faster R-CNN, RetinaNet и SSD. 
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Для более точной локализации дефектов, особенно при необходимости не просто обве-

сти их рамкой, а выделить все пиксели, относящиеся к повреждению, используются архи-

тектуры семантической сегментации. Наиболее известными здесь являются U-Net и 

DeepLabv3+ [22]. Модель U-Net, в частности, показала точность до 92,23 % в задаче сег-

ментации трещин. В одном из исследований лучшие результаты на датасете ISTD-PDS7 

показала модель SegFormer, достигнув F1-меры 94,23 %. Эти модели позволяют не только 

находить дефекты, но и точно измерять их площадь и форму. 

Помимо CNN, в последнее время все большее внимание уделяется трансформерам и 

графовым нейросетям, хотя их применение в данной области еще не так широко распро-

странено, как в других областях ИИ. Трансформеры демонстрируют высокую производи-

тельность в задачах, связанных с длинными зависимостями и глобальным контекстом, что 

может быть полезно для анализа больших участков дороги. Например, модель Pavement-

DETR на основе RT-DETR для детекции шести типов дефектов показала mAP@0.5 = 87,1 % 

на датасете UAV-PDD2023, превзойдя базовую модель на 7,7% [23]. 

Архитектуры, сочетающие CNN и трансформеры, также исследуются для детекции 

выбоин на дорогах.  
 

НАБОРЫ ДАННЫХ 
 

Качество и масштабность наборов данных являются основополагающими факторами, 

определяющими развитие области мониторинга качества дорожного покрытия. Хорошо 

размеченный, разнообразный и большой датасет позволяет обучать более точные и ро-

бастные модели. Однако текущее состояние исследовательского поля характеризуется 

наличием множества небольших, часто закрытых датасетов, что затрудняет воспроизво-

димость результатов и сравнение методов. 

Существует множество открытых наборов данных, каждый из которых имеет свои осо-

бенности. Самые крупные и популярные – это датасеты, собранные в ходе международ-

ных соревнований. Например, RDD2022 содержит 47420 изображений из шести стран 

мира, размеченных по четырем типам дефектов (продольные и поперечные трещины, 

крокодиловое растрескивание, выбоины), что делает его ценным для обучения моделей, 

применяющихся для разных типов дорог [24]. Датасет TD-RD содержит 7088 высокока-

чественных изображений с 12882 размеченными экземплярами трещин и выбоин [25]. 

Другой крупный датасет, EGY_PDD, включает 14612 2D-изображений и 4323 сцены с 

3D-данными (глубина и облако точек), собранными в Египте, что позволяет работать с 

мультимодальными данными [26]. Существуют также специализированные датасеты, 

например, ISTD-PDS7, содержащий 18527 изображений для задачи сегментации с 7 типа-

ми дефектов и большим количеством негативных примеров (теней, пятен), что повышает 

робастность моделей.  

Несмотря на наличие подобных датасетов, исследовательская практика показывает, что 

большинство моделей обучается на приватных данных, собранных исследователями для 

своих целей. Это создает проблему, поскольку результаты, полученные на одном ограни-

ченном датасете, могут не быть репрезентативными для других условий. Еще одной про-

блемой является недостаток стандартизированных 3D-датасетов, что ограничивает разви-

тие методов, использующих LiDAR и 3D-сканирование. 

Однако существуют и другие датасеты. Например, RoadBench, самый крупный в своей 

области датасет, содержащий 100 000 пар «изображение-текст» высокого разрешения [27]. 

Его уникальность заключается в том, что каждое изображение сопровождается подроб-

ным текстовым описанием, сгенерированным GPT-4o. Это позволяет развивать визуаль-

но-языковые модели, которые могут лучше понимать контекст и детали дефектов. 
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RoadBench включает 10 типов повреждений, включая смешанные и неопределенные слу-

чаи, что делает его более реалистичным и сложным для анализа. 

Датасет TD-RD специально создан для детекции повреждений и содержит 715 088 

изображений с 12882 разметками трещин, выбоин и заплат. Кроме того, были разработаны 

датасеты, сфокусированные на конкретных технологиях. Например, датасет, который 

включает данные от десяти типов датчиков (акселерометр, гироскоп, GPS и др.) и разде-

лен на две категории: данные об аномалиях и данные о стиле вождения, что позволяет 

проводить более глубокий анализ 30 влияний внешних факторов [28]. 

Таким образом, развитие методов для определения качества дорог напрямую связано с 

появлением и улучшением наборов данных. Будущие исследования будут все больше за-

висеть от доступности крупных, разнообразных и хорошо размеченных мультимодальных 

датасетов, которые позволят создавать действительно универсальные и надежные систе-

мы мониторинга. 

В нашем исследовании для обучения и тестирования моделей использовался датасет 

RSRD – Road Surface Dataset [29]. Используемый набор данных содержит 8000 файлов 

четырех типов (модальностей): 

1. Изображения высокого разрешения, полученные в результате видеосъемки дорожно-

го покрытия в различных погодных условиях. 

2. Карты глубины, полученные на основе слияния нескольких кадров LiDAR-данных, 

представляют собой двумерные изображения, в которых каждый пиксель соответствует 

расстоянию от датчика до объекта в сцене. Такие карты строятся на основе данных, полу-

ченных с помощью LiDAR-сенсора – активного дальномера, работающего на основе ла-

зерного сканирования. 

3. Карты диспарантности – изображения, в которых каждый пиксель содержит инфор-

мацию о разности положения одной и той же точки сцены на двух изображениях, снятых 

с разных ракурсов. 

4. Облака точек, полученные с использованием многокадрового объединения данных 

LiDAR с компенсацией движения. 

5. Видеосъемка проводилась на асфальтовых и бетонных покрытиях в городских и сельских 

районах. Скорость автомобиля была ограничена 40 км/ч для повышения качества данных. 

Разметка изображений на классы «трещины» и «выбоины» производилась с использо-

ванием платформы Roboflow. Аннотация разметки была в формате coco.json. 

 

АРХИТЕКТУРА ПРЕДЛАГАЕМОГО РЕШЕНИЯ 
 

Для задачи выявления дефектов дорожного полотна предлагается мультимодальная архи-

тектура, объединяющая визуальные и лидарные данные. Схема работы представлена на рис. 1. 
 

 
 

Рис. 1. Схема архитектуры мультимодального метода определения  

повреждений дорожного покрытия 
 

Fig. 1. Schematic diagram of the architecture of the multimodal method  

for determining road surface damage 
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В качестве основного блока используется детектор Faster R-CNN, который отвечает за 

выделение областей интереса – потенциальных участков повреждений дорожного покры-

тия. Эти области далее подвергаются двунаправленной обработке: 

1. Визуальный канал. 

Области интереса подаются на вход классификатору изображений Swin Transformer 

Small. Этот модуль анализирует текстуру, цвет и форму дорожного полотна, что позволяет 

зафиксировать такие признаки повреждений, как трещины или выбоины. 

2. Лидарный канал. 

Параллельно с визуальной обработкой происходит сопоставление области интереса с 

данными облака точек, полученными от лидар-датчика. Для анализа трехмерной геомет-

рии используется PointNet, который классифицирует объекты на основе пространствен-

ной структуры поверхности дороги. Такой подход позволяет выявлять дефекты, слабо вы-

раженные на изображении, но отчетливо различимые в геометрии. 

Оба канала формируют независимые предсказания, которые затем объединяются с уче-

том весовых коэффициентов: 

• w_frcnn = 0,1 – вклад базового детектора, 

• w_resnet = 0,6 – основной вес, присвоенный визуальному классификатору, 

• w_kpconv = 0,4 – вес предсказаний по данным лидара. 

Итоговое решение формируется путем взвешенного суммирования результатов, что 

обеспечивает баланс между различными модальностями и повышает надежность класси-

фикации. Такой мультимодальный подход позволяет не только повысить точность детек-

ции дефектов, но и уменьшить вероятность ложных срабатываний за счет перекрестной 

проверки признаков в разных источниках данных. 

 

ДЕТЕКЦИЯ ПОВРЕЖДЕНИЙ ДОРОЖНОГО ПОКРЫТИЯ НА ИЗОБРАЖЕНИЯХ,  

ПОЛУЧЕННЫХ В РЕЗУЛЬТАТЕ ВИДЕОСЪЕМКИ 
 

Детекция и выделение повреждений дорожного покрытия на изображении является 

одним из основных этапов при анализе результатов видеосъемки. Для детекции повре-

ждений дорожного покрытия на изображениях в исследовании были использованы архи-

тектуры Faster R-CNN, YOLO8 Nano и YOLO8 Small. 

В качестве метрик, которые влияли на выбор наилучших весов для модели при ее обу-

чении, использовали функцию потерь и полноту (recall). Выбор полноты в качестве мет-

рики был обусловлен важностью детекции положительных объектов на изображении. Для 

сравнения разных моделей использовали метрики точность (precision), полнота (recall), 

f1-score и точность предсказания границ (Intersection over Union, IoU). 

Модель Faster R-CNN представляет собой детектор с архитектурой ResNet-50 в каче-

стве backbone и функционалом Feature Pyramid Network (FPN). Модель Faster R-CNN яв-

ляется двухстадийным детектором, который на первом этапе извлекает регионы интереса, 

а затем определяет их класс и уточняет расположение [30].  

Архитектура Faster R-CNN была инициализирована с использованием предобучен-

ных весов на COCO и дообучалась на задаче с пользовательскими классами дефектов 

дорожного полотна, а также с учетом фонового класса. В оригинальной модели была 

заменена головная часть классификатора box_predictor на новую, соответствующую 

числу целевых классов. 

В результате обучения модели Faster R-CNN на валидационной выборке значение 

функции потерь составило 0,2432, а полнота (recall) составляла 0,8526. 
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Следует отметить, что метрика AP@[0,5:0,95], представляющая собой среднее значе-

ние точности по различным уровням перекрытия (IoU), является достаточно строгим кри-

терием. Однако в контексте рассматриваемой прикладной задачи автоматического мони-

торинга дорожного покрытия эта метрика не является определяющей. Целью же предла-

гаемой системы является своевременное обнаружение повреждений дорожного полотна, в 

том числе потенциальных, с возможностью последующего анализа их характера и степе-

ни опасности. В этой связи особую важность приобретает полнота (recall) модели – спо-

собность фиксировать максимальное число случаев наличия дефекта. Напротив, ложно-

положительные срабатывания (false positives) в рамках такой системы представляют 

меньшую угрозу: они могут быть отфильтрованы на последующих этапах обработки, в 

том числе с использованием дополнительных модальностей, таких как облака точек, 

карты глубины и диспарантности. Таким образом, допустимость ложных срабатываний 

компенсируется отсутствием пропусков, что критически важно для обеспечения без-

опасности дорожного движения.  

Модель YOLOv8 относится к одноэтапным детекторам объектов и реализует подход 

«end-to-end» – от входного изображения сразу к предсказаниям классов и координат объ-

ектов. В данной работе использовались облегченные модификации YOLOv8: YOLOv8 

Nano и YOLOv8 Small, разработанные с целью повышения скорости обработки и умень-

шения требований к вычислительным ресурсам. Архитектура YOLOv8 основана на пол-

ностью сверточной нейросети без явно выделенного backbone и включает в себя улуч-

шенные механизмы извлечения признаков, а также адаптивную иерархическую структуру 

обнаружения объектов. YOLOv8 использует современный механизм декодирования пред-

сказаний на основе anchor-free подхода, что позволяет повысить точность и стабильность 

при работе с различными масштабами объектов. Благодаря высокой скорости и компакт-

ности модели YOLOv8 Nano и Small хорошо подходят для задач реального времени и 

применения на встраиваемых устройствах [31]. 

Сравнение основных метрик моделей, используемых для детекции повреждений дорожного 

покрытия, представлено в таблице 1. 
 

Таблица 1. Сравнение основных метрик моделей 
 

Table 1. Comparison of the main metrics for the models 
 

 

Из рассмотренных моделей Faster R-CNN демонстрирует наиболее сбалансированные 

значения основных метрик, особенно по полноте и F1-score. При этом для моделей семей-

ства YOLO характерны низкие значения метрики recall для класса «выбоины». Наиболь-

шее значение метрики IoU было также при анализе тестовой выборки моделью Faster 

R-CNN. При этом данное значение все равно было достаточно низким, однако это не яв-
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Faster-R-CNN 0,93 0,95 0,82 0,61 0,87 0,74 0,166 

YOLOv8 Nano 0,85 1 1 0.18 0,92 0,31 0,104 

YOLOv8 Small 0,89 1 1 0,42 0,94 0,60 0,143 
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ляется критичным для задачи мониторинга, где ключевым показателем является recall – 

важно не пропустить дефект. Ошибки в виде ложного выделения исправных участков 

(низкий precision) менее значимы, поскольку они не приводят к реальным потерям, а уве-

личивают объем последующего анализа. 

 

КЛАССИФИКАЦИЯ ПОВРЕЖДЕНИЙ ДОРОЖНОГО ПОКРЫТИЯ НА ИЗОБРАЖЕНИЯХ,  

ПОЛУЧЕННЫХ ПРИ ВИДЕОСЪЕМКЕ 
 

Для повышения точности определения типа повреждения дорожного покрытия (выбо-

ины или трещины) после их детекции на изображении применяли бинарную классифика-

цию. При решении данной задачи сравнивали модели глубокого обучения на основе свер-

точных нейронных сетей и трансформеров. Среди сверточных нейронных сетей были вы-

браны такие модели, как ResNet-18, Res-Net-34, ResNet-50 и EfficientNet-B0 – B7, а среди 

трансформеров – SwinTransformer tiny, SwinTransformer base, SwinTransformer small.  

В процессе обучения для выбора наилучшей модели оценивали функцию потерь и мет-

рику Macro F1 на валидационной выборке. Данная метрика позволяет оценить эффектив-

ность работы классификатора на несбалансированных выборках. Для выбора наилучшей 

модели сравнивались такие метрики, как precision (точность для положительных предска-

заний), recall (полнота), f1-score, macro average (среднее значение для несбалансирован-

ных классов), weighted average (взвешенное среднее значение), accuracy (точность). 

Cверточная нейронная сеть ResNet, предобученная на датасете ImageNet , представ-

ляет собой глубокую остаточную сеть, которая использует механизм остаточных свя-

зей (residual connections). Данный механизм позволяет эффективно обучать глубокие 

нейронные сети, предотвращая затухание градиента и способствуя более стабильной и 

быстрой сходимости. Данная архитектура была выбрана из-за ее высокой устойчиво-

сти к переобучению, способности эффективно извлекать иерархические признаки с 

различных уровней абстракции, а также доказанной эффективности в задачах класси-

фикации изображений. Благодаря использованию остаточных блоков ResNet демон-

стрирует высокую обобщающую способность даже при ограниченном объеме обуча-

ющих данных, что делает ее особенно подходящей для задач, где важно точно класси-

фицировать мелкие и разнообразные дефекты на дорожных покрытиях. Кроме того, 

наличие предварительно обученных весов на ImageNet позволяет ускорить обучение и 

повысить начальное качество модели за счет переноса знаний из широкой области 

компьютерного зрения [32].  

На рисунке 2 показаны графики обучения моделей ResNet-18, ResNet-34, ResNet-50. 
 

 
 

Рис. 2. Графики обучения на тренировочной выборке ResNet-18, ResNet-34, ResNet-50 
 

Fig. 2. Training graphs on the training set ResNet-18, ResNet-34, ResNet-50 
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Среди исследованных моделей семейства ResNet (ResNet-18, ResNet-34, ResNet-50) 

сравнимые результаты были показаны для моделей ResNet-18 и ResNet-34. Однако 

наибольшее среднее значение F1-меры (0,8752) по двум классам и общее значение точно-

сти (0,8756) показала модель ResNet-18. Общее значение точности классификации модели 

ResNet-50 на тестовой выборке было на 2 % ниже, чем у двух других архитектур. 

EfficientNet – это семейство сверточных нейронных сетей, предложенное с целью до-

стижения оптимального баланса между точностью и вычислительной эффективностью. 

Архитектура EfficientNet была разработана с использованием метода автоматического 

масштабирования модели (compound scaling), который одновременно увеличивает глуби-

ну, ширину и разрешение входных изображений в заданных пропорциях. 

Базовая модель EfficientNet-B0 была разработана с использованием метода автоматизи-

рованного подхода, позволяющего оптимизировать структуру нейронной сети для дости-

жения баланса между точностью и вычислительной эффективностью. Эта модель послу-

жила фундаментом для создания более крупных вариантов EfficientNet (B1–B7), которые 

получили путем масштабирования базовой архитектуры с сохранением ее сбалансирован-

ности. Такой подход обеспечил существенное улучшение качества предсказаний без экс-

поненциального роста вычислительных затрат, характерного для традиционных методов 

увеличения глубины или ширины сети. Архитектура EfficientNet построена на основе 

блоков MBConv (Mobile Inverted Bottleneck Convolution), заимствованных из 

MobileNetV2, и использует эффективные разделяемые сверточные операции (depthwise 

separable convolutions). Кроме того, каждая операция дополнена механизмом Squeeze-and-

Excitation (SE), который адаптивно перенастраивает весовые коэффициенты каналов, что 

способствует улучшению выделения информативных признаков [33]. 

Ключевые особенности EfficientNet: 

1. Эффективное использование вычислительных ресурсов за счет сбалансированного 

масштабирования. 

2. Повышенная точность для задач классификации изображений. 

3. Компактность и быстродействие, особенно в младших версиях (B0–B2), что делает 

их подходящими для мобильных и встраиваемых систем. 

В исследовании были использованы модели EfficientNet-B0 – EfficientNet-B7, которые 

различаются между собой по глубине, ширине и разрешению входного изображения. С 

возрастанием поколения EfficientNet также увеличивается количество параметров. Например, 

в EfficientNet-B0 – 5,3 млн параметров, тогда как в EfficientNet-B7 – 66 млн. 

На рисунке 3 показаны графики обучения моделей EfficientNet-B0 – EfficientNet-B7. 

В семействе EfficientNet (варианты от B0 до B7) максимальные показатели основных 

метрик продемонстрировала модель EfficientNet-B6. Среднее значение F1-мера для 

обоих классов составило 0,9003, а значение точности (accuracy) – 0,9005, что делает ее 

наилучшей архитектурой среди исследуемых из данного семейства. При этом модель 

лишь незначительно превосходит по метрикам версии B4 (0,8980 и 0 ,8982 соответ-

ственно) и B5 (0,8956 и 0,8959 соответственно), однако все же обеспечивает наивыс-

шую точность классификации. 

Нейронная сеть на основе трансформерной архитектуры – Swin Transformer, предобу-

ченная на датасете ImageNet, представляет собой иерархическую архитектуру визуально-

го трансформера, в которой используется оконный механизм привлечения внимания 

(window-based self-attention), который перемещается по изображению для выделения объ-

ектов. В отличие от классического глобального механизма внутреннего внимания окон-

ный подход позволяет существенно сократить вычислительную сложность, что делает 

модель более эффективной при работе с изображениями высокого разрешения. 
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Рис. 3. Графики обучения на тренировочной выборке EfficientNet-B0 – EfficientNet-B7 
 

Fig. 3. Training graphs on the training set EfficientNet-B0 - EfficientNet-B7 

 

Ключевой особенностью Swin Transformer является использование сдвинутых окон 

(shifted windows), обеспечивающих перекрытие между соседними окнами. Это позволяет 

эффективно объединять локальную и глобальную информацию, что особенно важно для 

задач, требующих пространственного контекста, таких как классификация, сегментация и 

детекция объектов. 

Архитектура построена иерархически: на каждом уровне обработки пространственное 

разрешение уменьшается, а размерность признаков увеличивается аналогично принци-

пам, применяемым в сверточных нейронных сетях. Это позволяет Swin Transformer соче-

тать преимущества трансформеров и сверточных моделей, обеспечивая высокую точность 

при умеренной вычислительной нагрузке [34]. 

Модели Swin различаются по размеру (Tiny, Small, Base, Large) и числу параметров, 

что позволяет подобрать подходящий вариант в зависимости от доступных ресурсов и 

требований к качеству распознавания. 

На рисунке 4 показаны графики обучения моделей Swin Tiny, Swin Small, Swin Base.  
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Рис. 4. Графики обучения на тренировочной выборке Swin Tiny, Swin Small, Swin Base 
 

Fig. 4. Training graphs on the training set Swin Tiny, Swin Small, Swin Base 

 

Среди исследованных моделей на базе Swin Transformer (Tiny, Small, Base) лучшую 

производительность продемонстрировала модель Swin Small. Так, среднее значение F1-меры 

составило 0,9004, а accuracy – 0,9005. Указанная модель существенно превосходит более 

легкие (Swin Tiny) и тяжелые варианты (Swin Base), что делает ее предпочтительной для 

рассматриваемой задачи (табл. 2).  
 

Таблица 2. Результаты итогового сравнения моделей для бинарной классификации 
 

Table 2. Results of the final comparison of models for binary classification 
 

 

По результатам сравнительного анализа моделей наилучшие показатели точности 

классификации (accuracy) продемонстрировали трансформер Swin Small и сверточная 

нейронная сеть EfficientNet-B6. Кроме того, модель Swin Small обладала наилучшими 
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ResNet-18 0,8388 0,9213 0,9299 0,8213 0,8820 0,8684 0,8756 

ResNet-34 0,8277 0,9367 0,9457 0,8032 0,8828 0,8648 0,8744 

ResNet-50 0,8124 0,9086 0,9208 0,7873 0,8632 0,8436 0,8541 

EfficientNet-B0 0,8686 0,9223 0,9276 0,8597 0,8972 0,8899 0,8937 

EfficientNet-B1 0,8214 0,9263 0,9367 0,7964 0,8753 0,8564 0,8665 

EfficientNet-B2 0,8182 0,9482 0,9570 0,7873 0,8822 0,8603 0,8722 

EfficientNet-B3 0,8090 0,9272 0,9389 0,7783 0,8691 0,8462 0,8586 

EfficientNet-B4 0,8636 0,9400 0,9457 0,8507 0,9028 0,8931 0,8982 

EfficientNet-B5 0,8739 0,9207 0,9253 0,8665 0,8989 0,8928 0,8959 

EfficientNet-B6 0,8688 0,9381 0,9434 0,8575 0,9046 0,8960 0,9005 

EfficientNet-B7 0,8416 0,9171 0,9253 0,8258 0,8815 0,8690 0,8756 

Swin Tiny 0,8463 0,9022 0,9095 0,8348 0,8768 0,8672 0,8722 

Swin Base 0,8351 0,9073 0,9163 0,8190 0,8738 0,8609 0,8676 

Swin Small 0,8899 0,9116 0,9140 0,8869 0,9018 0,8991 0,9005 
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значениями метрик recall и F1-score для класса «выбоины». Стоит отметить, что среди 

моделей семейства ResNet наилучшие значения точности были у моделей ResNet-18 и 

ResNet-34. 

 

КЛАССИФИКАЦИЯ ПОВРЕЖДЕНИЙ ДОРОЖНОГО ПОКРЫТИЯ С ИСПОЛЬЗОВАНИЕМ ДАННЫХ,  

ПОЛУЧЕННЫХ С ДАТЧИКОВ ЛИДАР 
 

Помимо изображений с видеокамер, для определения наличия и типа повреждения до-

рожного покрытия можно использовать данные, полученные с датчиков лидар (LiDAR). 

Данный тип датчиков использует лазерные импульсы для определения расстояния до объ-

екта. Одним из типов данных, получаемых с датчиков лидар, является «облако точек», ко-

торое представляет собой набор точек в трехмерном пространстве и отражает геометри-

ческие особенности поверхности, карты глубины и диспарантности, которые соответ-

ствуют расстоянию от датчика до объекта [35]. 

Для классификации данных типа «облако точек» необходимо использовать модели, ко-

торые будут работать в трехмерном пространстве и учитывать зависимости между точка-

ми.  В данном исследовании для задачи классификации «облаков точек» были использо-

ваны следующие модели: Point Transformer, PointNet и PointNet++. 

Архитектура Point Transformer использует модифицированный механизм внимания 

(attention), адаптированный под трехмерные пространственные данные, и позволяет эф-

фективно учитывать локальные и глобальные зависимости между точками, что критиче-

ски важно при анализе сложных объектов дорожной инфраструктуры, таких как выбоины, 

трещины или искусственные неровности.  

Входной слой модели представлял собой полносвязную проекцию координат каждой 

точки из пространства R3 в пространственное признаковое представление размерности 64. 

Далее следовали два блока Point Transformer, каждый из которых осуществлял агрегацию 

признаков с учетом ближайших соседей каждой точки (по евклидовому расстоянию) и 

учитывал относительные пространственные сдвиги между точками. Attention-механизм в 

этих блоках позволял каждой точке адаптивно взаимодействовать со своими соседями на 

основе как геометрической близости, так и содержательных признаков, что существенно 

усиливало выразительную способность модели. 

После извлечения признаков из всех точек производилась глобальная агрегация с ис-

пользованием адаптивного слоя max pooling, что позволяло получить компактное пред-

ставление всего облака точек. Далее это представление передавалось в классификацион-

ный блок, состоящий из нескольких полносвязных слоев с функцией активации ReLU и 

выходным softmax-слоем. Он формировал вероятностное распределение по классам, соот-

ветствующим типам состояния дорожного покрытия (трещины или выбоины). 

Таким образом, предложенная модель сочетает в себе возможности глубоких сверточ-

ных структур и гибкость внимания, адаптированного под 3D-точечные облака, что делает 

ее эффективным инструментом для анализа и классификации дорожных объектов на ос-

нове пространственных данных [36]. 

Архитектура PointNet предназначена для классификации облаков точек в 3D-пространстве. 

На вход модели подается тензор размерности (B, N, 3), где B – размер батча, N – количе-

ство точек в облаке, а 3 – координаты каждой точки (X, Y, Z). Для обработки данных ис-

пользуется последовательность сверточных слоев с ядром размера 1, что эквивалентно 

применению многослойного персептрона (MLP) к каждой точке отдельно. Сначала точки 

транспонируются в формат (B, 3, N), после чего проходят через три сверточных блока с 
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увеличением размерности признаков: с 3 каналов до 64, затем до 128 и, наконец, до 

1024. Каждый сверточный слой сопровождается нормализацией батча (BatchNorm) и 

нелинейной активацией ReLU, что позволяет стабилизировать обучение и повысить вы-

раженность признаков. После обработки всех точек осуществляется глобальный max-pooling 

по точкам, который агрегирует информацию по всему облаку, создавая единый вектор 

признаков размерности 1024, представляющий все облако целиком. Далее этот глобаль-

ный вектор подается на несколько полносвязных слоев, также снабженных нормализаци-

ей, функциями ReLU и регуляризацией Dropout для предотвращения переобучения. На 

выходе сети формируется вектор с числом элементов, равным количеству классов,  для 

которых проводится классификация [37].  

Модель PointNet++ является следующим поколением архитектуры PointNet за счет 

иерархической многоуровневой обработки точечных данных с учетом локальных гео-

метрических структур. На вход подается тензор координат точек размерности (B, N, 3), 

где B – размер батча, N – число точек в облаке, а 3 – пространственные координаты каж-

дой точки. В основе модели лежит модуль PointNetSetAbstraction, реализующий этап 

абстракции множества точек. В этом модуле сначала производится выбор подмноже-

ства ключевых точек (центроидов) из исходного облака с помощью алгоритма farthest 

point sampling (FPS). FPS последовательно выбирает точки, максимально удаленные от 

уже выбранных, что обеспечивает равномерное покрытие пространства точек. Затем 

для каждого центроида определяется множество его k ближайших соседей, формируя 

локальные регионы. Далее координаты соседних точек нормализуются путем вычита-

ния координат соответствующего центроида, что позволяет модели быть инвариантной 

к локальному сдвигу. Если доступны дополнительные признаки точек (features), они 

группируются и конкатенируются с нормализованными координатами, формируя рас-

ширенные локальные дескрипторы. 

Для извлечения признаков из локальных групп используется последовательность 

сверточных слоев с ядром 1x1, за которыми следуют операции пакетной нормализации 

(BatchNorm) и нелинейной активации ReLU. Такая свертка применяется к каждому 

фрагменту отдельно, после чего применяется операция агрегации – max pooling, кото-

рая сводит информацию о локальном регионе в единый вектор признаков на каждый 

центроид. 

Архитектура строится иерархически: на первом уровне выбирается 512 центроидов  

с 32 соседями, затем на втором уровне – 128 центроидов и 32 соседа, где входными 

каналами второго уровня являются признаки, полученные на первом уровне. На треть-

ем уровне реализована глобальная абстракция без подвыборки, которая агрегирует 

признаки по всему облаку точек, формируя глобальный вектор размерности 1024. По-

лученный глобальный вектор подается на несколько последовательно соединенных 

полносвязных слоев с пакетной нормализацией, функциями активации ReLU и Dropout 

для борьбы с переобучением. На выходе формируется логит-вектор с размерностью, 

равной числу классов задачи классификации. Таким образом, архитектура PointNet++ 

эффективно интегрирует локальные и глобальные геометрические особенности «обла-

ков точек», обеспечивая высокую точность и устойчивость к вариациям простран-

ственного расположения точек. 

На рисунке 5 показаны графики обучения моделей Point Transformer, PointNet, 

PointNet++.  
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Рис. 5. Графики обучения на тренировочной выборке Point Transformer, PointNet, PointNet++ 
 

Fig. 5. Training graphs on the training set of Point Transformer, PointNet, PointNet++ 

 

Сравнение значений основных метрик, полученных при классификации повреждений 

дорожного покрытия с использованием моделей Point Transformer, PointNet и PointNet++, 

представлено в таблице 3. 
 

Таблица 3. / Table 3. 
 

 

На основании представленных результатов можно сделать обоснованный выбор в 

пользу модели PointNet. Несмотря на то, что PointNet++ демонстрирует наивысшие зна-

чения F1-меры для класса «трещина», ее отзывчивость (recall) по классу «выбоины» зна-

чительно ниже (0,4545), чем у двух других моделей, что говорит о слабой эффективности 

определения данного типа дефектов. Архитектура Point Transformer показывает высокую 

точность определения класса «трещины» (0,9091) при крайне низкой точности (0,3188) и 

F1-мере (0,4314) для класса «выбоина». Тогда как модель PointNet, напротив, демонстри-

рует наиболее сбалансированные метрики бинарной классификации. Данная модель до-

стигает наибольших значений метрик recall и F1-score для класса «выбоины» по сравне-

нию с другими моделями. При этом значения метрик, отражающих качество классифи-

кации трещин, снижаются незначительно относительно Point Transformer и PointNet++. 

При этом общая точность (accuracy) модели PointNet всего на 2,1 % ниже, чем у PointNet++, 

и на 17,9 % выше, чем у Point Transformer.  

Для задачи классификации карт глубин и диспарантности были обучены модели 

ResNet-18 и ResNet-34, которые показывают высокую эффективность при работе с изоб-

ражениями.  Такой выбор моделей был обусловлен тем, что данные карт глубин и диспа-

рантности были представлены в формате png. 

Так, модель ResNet-18 на тестовой выборке ResNet-18 показала следующие метрики 

для классов «трещина» и «выбоина»: precision составлял 0,72 и 1, recall – 1 и 0,22, а f1-score – 
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Point Transformer 0,9091 0,3188 0,7006 0,6667 0,7914 0,4314 0,6947 

PointNet 0,9290 0,6286 0,9172 0,6667 0,9231 0,6471 0,8737 

PointNet++ 0,8960 0,8824 0,9873 0,4545 0,9394 0,6000 0,8947 
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0,84 и 0,36 соответственно. При этом точность (accuracy) работы модели составила 0,74. 

Модель ResNet-34 показала значение precison – 0,67, recall – 1, f1-score – 0,8 для класса 

«трещины». Для класса «выбоина» данная модель показала нулевой результат, а общая 

точность (accuracy) классификации составила 0,67. 

В связи с этими результатами данные модальности не использовались в дальнейшей 

работе, так как они показали низкий recall для класса «выбоина», что свидетельствует о низ-

кой способности определять данный класс по данным карт глубины и диспарантности. 

В конечном итоге для реализации мультимодального метода была выбрана модель PointNet, 

которая классифицирует данные типа «облака точек», полученные с датчиков лидар. 

 

КЛАССИФИКАЦИЯ ПОВРЕЖДЕНИЙ ДОРОЖНОГО ПОКРЫТИЯ  

С ИСПОЛЬЗОВАНИЕМ МУЛЬТИМОДАЛЬНОГО ПОДХОДА 
 

Мультимодальный метод оценки дефектов дорожного покрытия сочетает в себе  

предсказания трех различных моделей, каждая из которых использует свою модаль-

ность: изображение RGB, фрагмент изображения (обрезка детектированного объекта) и 

облако точек. Целью данного подхода является повышение точности классификации 

объектов, обнаруженных на изображениях, за счет объединения информации из разных 

источников. 

В процессе тестирования изображения последовательно обрабатываются при помощи 

модели обнаружения объектов на базе Faster R-CNN. Модель предсказывает координаты 

ограничивающих рамок, метки классов и значения точности в предсказаниях. Для каждо-

го объекта, детектированного моделью Faster R-CNN с высокой точностью, осуществля-

ется извлечение фрагмента изображения, соответствующего рамке. Полученное изобра-

жение передается в предварительно обученную модель Swin Small для классификации 

фрагментов дефектов дороги. Результатом является распределение вероятностей по клас-

сам для определяемых дефектов (трещины или выбоины). 

В качестве еще одной модальности используются данные типа «облако точек», полу-

ченные с датчиков лидар и соответствующие входному изображению. Оно проецируется в 

изображение на основе калибровочных параметров камеры, после чего выделяются те 

точки, которые попадают в пределы каждой из обнаруженных рамок. Если число таких 

точек достаточно, то они нормализуются и передаются в модель PointNet для классифика-

ции на данных типа «облако точек». Данная модель также формирует свое предсказание, 

представленное в виде распределения вероятностей по классам. 

На заключительном этапе для каждой обнаруженной области осуществляется агрега-

ция предсказаний от всех трех моделей. Для этого соответствующие вероятностные рас-

пределения масштабируются с учетом заранее выбранных весов и суммируются. Наибо-

лее вероятный класс в объединенном распределении считается итоговым предсказанием. 

Такое взвешенное объединение позволяет компенсировать недостатки отдельных модаль-

ностей, обеспечивая более устойчивую и точную классификацию. 

Каждое финальное предсказание сопоставляется с соответствующей аннотацией из 

COCO-аннотаций на основе коэффициента перекрытия IoU. Если пересечение превышает 

заданный порог (например, 0.5), то объект считается корректно обнаруженным. Далее 

рассчитываются ключевые метрики: средняя точность (average precision), точность клас-

сификации (accuracy) по финальным меткам, а также полнота обнаружения (recall) без 

учета ложных срабатываний.  

В процессе объединения предсказаний от трех различных моделей была реализована 

процедура автоматического подбора оптимальных весовых коэффициентов, обеспечива-
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ющих наилучшую итоговую классификацию объектов. В качестве целевой метрики было 

выбрано значение усредненной F1-меры. 

Оптимальной комбинацией весов, обеспечившей наивысшую среднюю F1-меру по це-

левым классам («трещины» и «выбоины»), оказались значения: 0,1 для предсказаний мо-

дели детекции Faster R-CNN; 0,6 для классификатора на основе Swin Transformer и 0,4 для 

PointNet, обрабатывающего «облака точек».  

В таблице 4 представлено сравнение классификации мультимодального подхода с ин-

дивидуальными архитектурами, входящими в ее состав. 
 

Таблица 4. / Table 4. 
 

 

Так, значение метрики полноты выросло на 1,31 % относительно модели Swin Small и 

23,33 % относительно PointNet. Значение общей точности выросло на 5,52 % и 8,20 % от-

носительно моделей Swin Small и PointNet соответственно. 

В таблице 5 представлено сравнение детекции мультимодального подхода с архитекту-

рой Faster-R-CNN. 
 

Таблица 5. / Table 5. 
 

 

Из представленных данных можно сделать вывод, что метрика IoU при использовании 

мультимодального подхода выросла более чем в 2 раза. Кроме того, выросли показатели 

точности, полноты и F1-score, особенно для детекции класса «выбоины». Так, значение 

метрики полноты для данного класса выросло на 27 %, а F1-score – на 20 %. 

Таким образом, мультимодальный подход демонстрирует не только наиболее высокую 

точность классификации относительно базовых моделей, но и значительное улучшение 

детекции дорожных дефектов, тем самым подтверждая актуальность использования ком-

плексных данных в интеллектуальных транспортных системах. 
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Swin Small 0,8899 0,9116 0,9140 0,8869 0,9018 0,8991 0,9005 

PointNet 0,9290 0,6286 0,9172 0,6667 0,9231 0,6471 0,8737 

Мультимодальный 

метод 

0,98 0,87 0,97 0,90 0,97 0,88 0,9557 
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Faster-R-CNN 0,93 0,95 0,82 0,61 0,87 0,74 0,166 

Мультимодальный 

метод 

1 1 0,82 0,88 0,90 0,94 0,3271 
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ЗАКЛЮЧЕНИЕ 
 

В работе представлен мультимодальный нейросетевой метод для определения качества 

дорожного полотна, сочетающий анализ визуальных данных и трехмерных облаков точек. 

Проведенное исследование демонстрирует, что каждая из рассмотренных модальностей в 

отдельности – будь то детекция на изображениях с помощью Faster R-CNN или YOLO, 

классификация визуальных патчей с помощью Swin Transformer или анализ геометрии с 

помощью PointNet – обладает своими сильными и слабыми сторонами. 

Ключевым результатом работы является подтверждение гипотезы о синергетическом 

эффекте при объединении различных модальностей. Предложенная мультимодальная ар-

хитектура, использующая взвешенное суммирование предсказаний, позволила не только 

достичь высокой общей точности классификации (95,57 %), но и значительно улучшить 

ключевые для прикладной задачи метрики детекции, особенно для сложноконтрастных 

дефектов, таких как выбоины. Наблюдаемый рост полноты (recall) и F1-score для этого 

класса свидетельствует о способности системы минимизировать пропуски дефектов, что 

является критически важным в контексте безопасности. 

Таким образом, мультимодальный подход, представленный в статье, подтверждает 

свою эффективность и перспективность для внедрения в интеллектуальные транспортные 

системы для автоматизированного мониторинга состояния дорожной инфраструктуры. 
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