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Аннотация. Проблема сейсмичности в Камчатском крае обусловливает важность фундаментальных 

исследований, способствующих пониманию процессов, происходящих в земной коре. Аномальные 

изменения концентрации радиоактивного газа радона (222Rn) считаются одним из краткосрочных 

предвестников землетрясений. Мониторинг представляет собой сбор информации по объемной 

активности 222Rn (ОАР) в накопительной камере регистратора со временем и выявление аномалий. 

Однако механизмы возникновения таких аномалий малоизучены. Поэтому авторами ранее были 

предложены новые математические эредитарные модели ОАР, с учетом нелокальности по времени 

процесса переноса в неоднородной фрактальной геосреде, для описания необычной миграционной 

способности 222Rn. Основной параметр моделей – переменный порядок дробной производной типа 

Герасимова–Капуто, связанный с интенсивностью процесса переноса 222Rn при изменении 

проницаемости геосреды. 

Цель исследования – решение коэффициентной обратной задачи идентификации значений  в 

математической эредитарной модели аномальных вариаций ОАР. 

Методы исследования. Используются методы математического моделирования процессов, 

протекающих в геологической среде, и решение коэффициентных обратных задач для таких 

моделей с помощью алгоритма на основе метода Левенберга–Марквардта (IP-LM). 

Результаты. Получен ряд результатов решения обратной задачи при различных параметрах, 

управляющих ходом IP-LM. Результаты разделяются на 2 типа: неправдоподобные – из-за выхода 

из области допустимых значений и начального приближения идентифицируемых значений, 

близких к ориентиру, вручную подобранным значениям; правдоподобные – из-за начального 

приближения, близкого к 0, хорошего согласия результатов с данными ОАР, где  сохраняет рост 

значений от 0 к 1 при потере явной периодичности ориентира.  

Выводы. Из результатов можно сделать вывод о возможности решения сформулированной 

двухпараметрической обратной задачи на основе экспериментальных данных ОАР. Получаемые 

результаты правдоподобны, однако результат решения обратной задачи зависит от начального 

приближения идентифицируемых значений. 
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Abstract. The seismicity issue in the Kamchatka region highlights the importance of fundamental 

research to understand the processes occurring in the Earth's crust. Anomalous changes in the concentration 

of radioactive radon gas (222Rn) have been observed to be precursor to earthquakes. Monitoring involves 

collecting data on the volume activity of 222Rn in the recording chamber over time and detecting any 

unusual patterns or anomalies. However, the mechanisms behind these irregularities are still not well 

understood. Therefore, the authors have previously proposed new mathematical hereditary VAR models 

to describe the unusual migration capacity of 222Rn, taking into account the time-dependent transport 

process in a heterogeneous fractal geoenvironment. The key parameter of the models is the variable order 

of the Gerasimov-Caputo fractional derivative, related to the intensity of the 222Rn transport process with 

changes in the permeability of the geoenvironment. 

Аim. The study is to solve the coefficient inverse problem of identifying values in the mathematical 

hereditary model of anomalous variations of the OAR. 

Research methods. Methods of mathematical modeling of processes occurring in the geological 

environment are used, as well as solving coefficient inverse problems for these models using an algorithm 

based on the Levenberg-Marquardt method (IP-LM). 

Results. A series of results are obtained for solving the inverse problem with various parameters 

controlling the IP-LM motion. The results are divided into two types: implausible – due to going beyond 

the range of acceptable values and the initial approximation of identified values close to the reference 

point, similar to manually selected values; plausible – due to the initial approximation close to 0, good 

agreement between the results and the OAR data, where the increase in values from 0 to 1 is maintained 

despite the loss of the reference point's apparent periodicity.  

Conclusions. The results suggest that it is possible to solve the formulated two-parameter inverse 

problem based on the experimental data of the OAR. The obtained results are plausible; however, the 

outcome of the inverse problem solution depends on the initial approximation of the identified values. 
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ВВЕДЕНИЕ 

 

Полуостров Камчатка расположен в одном из наиболее сейсмоопасных районов Земли, 

а сильные сейсмические события способны нанести огромный ущерб. Проблема сейсмич-

ности в Камчатском крае и прилежащих землях обусловливает важность фундаментальных 

исследований, которые могут расширить наше понимание процессов, происходящих в зем-

ной коре, при подготовке будущего очага землетрясения. Одним из таких актуальных 

направлений является применение экспериментальных данных мониторинга подпочвен-
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ных газов в сопоставлении со сведениями о сейсмичности, в совокупности с исследовани-

ями процессов миграции подпочвенных газов с помощью методов математического моде-

лирования с целью выделения из данных и интерпретации аномалий как возможных пред-

вестников землетрясений.  

В целях поиска предвестниковых сигналов в данных мониторинга концентраций под-

почвенных газов на полуострове Камчатка развернута сеть пунктов наблюдения, существу-

ющая более 20 лет [1]. В данном исследовании интерес представляет 222Rn – инертный радио-

активный газ с периодом полураспада около 3.85 суток, который постоянно выделяется из 

земной коры, что позволяет вести его непрерывную регистрацию. Газ 222Rn считается из-

вестным и хорошо себя зарекомендовавшим индикатором процессов, протекающих в гео-

логической среде [2, 3], особенно как краткосрочный предвестник землетрясений, а его ис-

следование ведется во многих странах, расположенных в сейсмоактивных районах мира. 

Концентрацию 222Rn характеризует такая величина, как объемная активность радона (ОАР) 

в накопительной камере, измеряемая в Бк/м3 и вычисляемая на основе числа зарегистриро-

ванных датчиками  -излучения импульсов за минуту. 
 

 
 

Рис. 1. Данные ОАР (аномальный выброс) с пункта наблюдения МРЗР (на базе скважины  

«Морозная-1», Елизовский район, Камчатка) 19.04.2021 05:43 – 21.04.2021 23:43  

с частотой дискретизации 1/6 ч: (синий) – камера 1 на глубине 0.2 м;  

(красный) – камера 2 на глубине 1 м 
 

Fig. 1. Data of RVA (anomalous emission) from the MRZR observation point (based on the  

Moroznaya-1 borehole, Yelizovsky District, Kamchatka) from 19.04.2021 05:43 to 21.04.2021 23:43  

with a sampling frequency of 1/6 h: (blue) – camera 1 at a depth of 0.2 m;  

(red) – camera 2 at a depth of 1 m 

 

Радоновые аномалии (аномальные вариации ОАР), как на рис. 1, могут служить пред-

вестниковыми сигналами подготовки сильных землетрясений. Стоит отметить, что в  ра-

ботах [2, 4, 5] и многих других, связанных с изучением предвестниковых аномалий, со-

брана и систематизирована информация о радоновых предвестниках, описаны методы ана-

лиза данных, исследуются физические модели возникновения землетрясений и их интер-

претации. Однако процесс массопереноса 222Rn по своей природе является нелокальным. 

Поэтому часто возникают случаи, когда радон обладает необычной миграционной способ-

ностью [6], и объяснить это с помощью только механизма диффузии, описываемой обык-

новенными производными, или механизма конвекции (адвекции) невозможно. Но если рас-

сматривать геологическую среду как среду со сложной топологией, неоднородную и пори-

стую, одним словом, фрактальную [7], то тогда процесс массопереноса 222Rn можно рас-

сматривать под углом аномальных процессов переноса [8]. 
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Поэтому авторами в исследованиях [9, 10] предлагаются математические эредитарные 

модели ОАР, но с учетом нелокальности по времени, что приводит к эффекту наследствен-

ности [11] в динамике переноса 222Rn [12]. Эредитарность – свойство системы или среды 

помнить некоторое время оказанное на нее воздействие. Эредитарность эквивалентна та-

ким понятиям, как последействие, наследственность, остаточность, память и запаздывание, 

нелокальность. Математический аппарат моделей с учетом нелокальности опирается на 

дробное исчисление, теория которого изучена достаточно хорошо [13, 14]. Основной пара-

метр эредитарных моделей ОАР – это 0 ( ) 1t   – переменный порядок дробной произ-

водной типа Герасимова–Капуто [15, 16], входящей в модель, связанный с интенсивностью 

процесса переноса 222Rn при изменении проницаемости геосреды. В свою очередь, измене-

ние проницаемости связывается с изменением напряженно-деформированного состояния 

геосреды при подготовке очага землетрясения. 

Одним из главных инструментов геофизических исследований является математическое 

моделирование процессов, протекающих в геологической среде. Но следующим по важно-

сти инструментом является постановка и решение коэффициентных обратных задач [17] 

для таких моделей на основе экспериментальных данных с целью идентификации модель-

ных параметров, так как часто невозможно провести их прямые измерения [18]. Еще одним 

фактором в пользу обратных задач является то, что параметры математических моделей 

могут принимать довольно сложный вид, в том числе иметь функциональные зависимости. 

Уточнение оптимальных значений параметров модели с помощью решения обратных задач 

на основе экспериментальных данных ОАР может сильно упростить процесс моделирова-

ния по сравнению с эмпирическим подбором параметров. Поэтому авторами в ряде работ 

формулируются и решаются обратные задачи с целью идентификации значений разнооб-

разных параметров в эредитарной  -модели ОАР с дробной производной Герасимова–Ка-

путо постоянного порядка. В работе [19] впервые была применена эредитарная  

 -модель ОАР для оценки изменения плотности потока радона на основе решения обрат-

ной задачи при изменении напряженно-деформированного состояния среды до и после 

сильного землетрясения на Камчатке 17 августа 2024 г. 

В  работе  [9]  также  рассматривается  задача  математического  моделирования  ано-

мальной ОАР (как на рисунке 1) с помощью эредитарной ( )t -модели. Параметры, 

представляющие собой разнообразные функции, подобраны эмпирически на основе со-

ображений о ходе процессов переноса, накопления 222Rn в накопительной камере, а 

также влиянии атмосферного давления на процесс накопления.  Однако уточнение оп-

тимальных значений этих функций проводилось тоже вручную, посредством сопостав-

ления решения с обработанными экспериментальными данными и по визуальным оцен-

кам степени подобия по R2 – коэффициенту детерминации и R – коэффициенту корре-

ляции Пирсона. В работе [20] на тестовом примере рассмотрена теоретическая возмож-

ность восстановления значений функции ( )t  в математической модели с дробной про-

изводной типа Герасимова-Капуто переменного порядка 0 ( ) 1t  . В качестве метода 

решения обратной задачи был предложен алгоритм на основе итерационного метода 

Левенберга–Марквардта [21]. 

Новизна данной статьи заключается в том, что рассматривается задача идентификации 

значений функции ( )t  в математической эредитарной ( )t -модели [9] аномальных вари-

аций объемной активности радона с помощью ранее предложенного метода и реализую-

щего его алгоритма [20]. 
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МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОАР С УЧЕТОМ ПЕРЕМЕННОЙ НАСЛЕДСТВЕННОСТИ 
 

Рассмотрим эредитарную ( )t -модель ОАР из работы [9] для описания аномального 

импульса (всплеска) ОАР, что представляет собой задачу Коши вида 

( ) 2 0
0, 0

( )
( ) ( ) ( ) ( ) ( ) ( ), ( ) , ( ) ,t

t

max max

AA t
A t a t A t b t A t c t A t A t

A A

 = − − + = =     (1) 

 

где обозначим: 2(0, )C T = – класс дважды непрерывно-дифференцируемых функций; 

(0,1)C = – класс непрерывно-дифференцируемых функций; ( )A t  – ОАР в безразмер-

ном виде, отн. ед.; ( )A t  – ОАР, 
maxA – максимальное значение ОАР, наблюдаемое в данных; 

0A – ОАР в начальный момент времени, Бк/м3; 0 ( ) 1, ( )t t    – функция, переменный 

порядок дробной производной, параметр, связанный с интенсивностью переноса 222Rn и 

изменением проницаемости геосреды, отн. ед.; 
0[ , ]t t T  – время рассматриваемого про-

цесса; 
0t и T>0 – начальный и конечный моменты времени соответственно, с;   – некото-

рое характерное время процесса, с; ( )a t  – функция, как и член, при котором она стоит, 

связанные выходом 222Rn из камеры в окружающую атмосферу при разнице давлений: 

внутреннего (камеры) и атмосферного, например, при прохождении в окрестности пункта 

наблюдения циклона, отн. ед.; 
0( )b t =  – коэффициент воздухообмена, с-1; ( )c t  – функция, 

описывающая диффузионный механизм переноса 222Rn в камеру [22], отн. ед. 

Член модели (1) в левой части уравнения, описывающий задержку, связанную с нело-

кальностью по времени в процессе переноса 222Rn через геологическую среду, согласно 

[9, 10] представляется оператором дробного дифференцирования типа Герасимова–Капуто 

переменного порядка (FD-VO) 0 ( ) 1t   вида 
 

( )

0, ( )0

1 ( )
( ) ,

(1 ( )) ( )

t
t

t t

A d
A t

t t





 

 
 =

 − −            (2) 

 

где Γ(∙) – гамма-функция Эйлера. 

Далее для сопоставления с результатами математического моделирования будут исполь-

зоваться данные с пункта МРЗР, описывающие только сам всплеск ОАР (рис. 1, синяя кри-

вая) на выделенном участке данных протяженностью T = 22 . Будем рассматривать за-

дачу (1) при значениях параметров: 

0 0
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   

2

.
 
  
 

    (3)        

 

ФОРМУЛИРОВКА ПРЯМОЙ ЗАДАЧИ И МЕТОД РЕШЕНИЯ EFDS 
 

Прямая задача представляет собой задачу Коши (1), состоящую в поиске ( )A t   при 

известных значениях ( )t   и параметров (3). 

Прямая задача будет решаться численно. С этой целью авторами в [23] предложено и 

изучено несколько численных схем. В данной работе воспользуемся нелокальной явной 

конечно-разностной схемой (EFDS). Шаг дискретизации возьмем h=1/6  аналогично 
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частоте дискредитации экспериментальных данных на рисунке 1. Независимо от схемы 

численное решение прямой задачи рассматривается в равномерной сеточной области ̂ : 

 h = T / N = 1 / 6, N = 132, (t) = , (t) = ,ˆ ( ) : 0 ,

ˆ ˆ( ) , 0 1, , ( ) , 0 1, ,i i i

ii

i

it ih i N a a c c

A t A A t  

 = =  

=     =    

     (4) 

 

где N – число узлов равномерной вычислительной сетки, размер входных данных. 

В силу того, что размер входных данных отдельной прямой задачи невелик ( N = 132 ), 

для численного решения прямой задачи воспользуемся нелокальной явной конечно-

разностной схемой (EFDS). С учетом аппроксимации оператора (2) из работы [23] и 

согласно методу Эйлера численная схема EFDS для решения уравнения из (1) на 

равномерной сетке (4) примет вид: 

( )( )

( )( )( )

( )( ) ( )

1

1 1 1

0 2

1 0 1 0 0 0 0 0
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1 1 2

2 1 1 1 1 1 1 0 1 1 1
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1 1 1 1

1

1

1
(1 ) ,

1
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1
1 ,
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i

i i i i

i
i i i

i i i i i i i j i j i j i i i i i

ji

i i

i j

i

A D w b u a A c
D

A D w b A D w A a A c
D

A D w b A Dw A D w A A a A b A c
D

h
D w j j w


   



+

+ + + +

+ − − + −

=

−
− − − −

+

= − + − +

= − + + − +

 
= − + + − − − + + 

 

= = + − = −
 −



( )1

1

0

,
N

i

−

=



        (5) 

 

где 0A C= – известная константа, начальное условие задачи Коши. 

Разностная прямая задача (5) состоит в том, чтобы в ̂ области (4) найти iA  при 

известных значениях сеточных аналогов функций из (3) и i  . 

Программные реализации различных методов и алгоритмов численного решения 

прямых и обратных задач, в том числе EFDS, интегрированы в программный комплекс 

FEVO v1.0 [24] для GNU/Linux, разработанный для решения задач моделирования 

динамики ОАР в сопоставлении с экспериментальными данными. 

 

ФОРМУЛИРОВКА ОБРАТНОЙ ЗАДАЧИ И МЕТОД ЕЕ РЕШЕНИЯ 
 

Первое: пусть значения функции ( )t  (или ее сеточного аналога ( )it  ) 

неизвестны. Однако в качестве информации о решении разностной прямой задачи Коши (5) 

в области ̂  можно представлять экспериментальные данные: 

( ) ( ), ( ) ( ), .i i i iA t t A t t A  = = =         (6) 
 

Второе: пусть ( )t   – функция известного класса, и ее вид однозначно определяется 

неким набором параметров  0 1,..., KX X X −=  согласно [25].  

Третье: у нас имеется представление о том, какой характер имеет функция ( ) ( , )t t X = . 

Тогда обратная задача для задачи Коши (1) с параметрами ( ), ( ), ( )a t b t c t  из (3) 

определяется как идентификация (восстановление, определение) оптимальных значений 

функции ( ) ( , )t t X =  на основе известных экспериментальных данных (6): 
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( ) ( )
, 22 0

0, 1

0
0 0 0

( )
( ) ( ) ( ) ( ) ( ) ( ), ( , ) 0.99 1 cos ,

( )
( ) , ( ) , ( ) ( ), ( ) ( ),

t X

t

max max

X T t
A t a t A t b t A t c t t X X t

T

AA t
A t A t A t t A t t

A A




 

 −  
 = − − + = −  

  

= = = =

       (7) 

 

а решение обратной задачи (7) сводится к поиску значений этих параметров X из 

множества векторов как пространства решений обратной задачи, где  𝕏⃗⃗ ⊂ ℝ𝐾.  

Тогда разностная обратная задача в области ̂  для (5) с сеточными аналогами параметров 

, ,i i ia b c  из (3) определяется как идентификация на основе известных экспериментальных 

данных (6) оптимальных значений сеточной функции: 

( )
20

1

( )
( , ) 0.99 1 cos , ( , ) .

X T ih
i X X ih i X

T
 

 −  
= −   

  
        (8) 

Далее в терминах теории безусловной оптимизации согласно [26] решение разностной 

обратной задачи сводится к минимизации функционала невязки между вектором 

экспериментальных данных и вектором решения разностной прямой задачи, полученного 

относительно некоторого приближения X в ходе решения обратной задачи. 

Важной характеристикой численных методов оптимизации является скорость 

сходимости, характеризующая эффективность используемого метода для решения 

обратной задачи. В данной статье опустим теорию и подробности, связанные с методикой 

решения обратной задачи для уравнения с дробной производной переменного порядка. С 

ними можно ознакомиться в работах [19, 20, 24]. В работе [20] на тестовом примере 

рассмотрена теоретическая возможность восстановления значений и вида функции ( )t в 

математической модели с дробной производной типа Герасимова–Капуто переменного 

порядка0 ( ) 1t  . В качестве метода решения обратной задачи был предложен алгоритм 

IP-LM на основе итерационного метода Левенберга–Марквардта [21].  

Важно отметить следующее. Решение обратной задачи методом IP-LM сводится к тому, 

чтобы в ходе цикла, начиная с заданных параметров, управляющих ходом метода IP-LM, 

многократно вычисляя решение разностной прямой задачи (5) с учетом приближений X , 

получаемых в ходе решения обратной задачи, вычислить оптимальные значения X . 

Такими параметрами, управляющими ходом IP-LM, являются: (0)X – начальное приближение 

для компонент X ; X – малые заданные приращения X ; числа c  и v  – константы 

пересчета параметра регуляризации  ; а также   – заданная точность решения как одно 

из условий выхода из цикла IP-LM. Параметр  имеет ключевое значение для IP-LM и 

напрямую связан с шагом и направлением сходимости метода. 

Иначе говоря, постановка и решение обратной задачи на параметры модели позволяет 

перейти от их перебора с целью нахождения оптимальных значений к подбору других 

параметров: (0)X , X , c , v , управляющих ходом метода IP-LM, которые уже не привязаны 

к физическому смыслу исходной задачи.   

 

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ НА ОСНОВЕ УТОЧНЕННЫХ ПАРАМЕТРОВ 
 

Далее на входе алгоритма решения обратной задачи и для сопоставления с результатами 

математического моделирования будут использоваться данные с пункта МРЗР из камеры 1, 

описывающие только сам всплеск ОАР (рис. 1, синий). Для этого выделяется участок 
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данных протяженностью   22T = . После проводится обработка данных: сглаживание SMA 

с окном в 2 значения; нормировка на максимум 
maxA . 

Результаты, полученные в виде кривых 1–2 (рис. 2) и кривых 1–2 (рис. 3), 

нереалистичны по следующим причинам. Во-первых, (0)X , начальное приближение, было 

взято очень близко к эталонному X  решению прямой задачи (рис. 2, кривая 5) и (рис. 3, 

кривая 5). Во-вторых, на рисунке 3 (кривая 1) видно, что было получено ( , ) 1i X  , что 

неверно, т. к. выходит за ограничение на параметр от 0 до 1, и тот факт, что решение  

(рис. 2, кривая 1) по численной схеме EFDS не развалилось, это удачное сочетание других 

параметров модели. 
 

 
 

Рис. 2. Модельные кривые: (1–4) – на основе результатов решения обратной задачи  

при различных управляющих параметрах (см. таблицу 1); (5) – «эталонная» модельная кривая 

как решение прямой задачи при функции (8), подработанной вручную из [9],  

в сопоставлении с (6) – обработанными данными ОАР с пункта МРЗР 
 

Fig. 2. Model curves: (1–4) – based on the results of solving the inverse problem  

for various control parameters (see Table 1); (5) – 'reference' model curve as the solution  

to the direct problem for the function (8), manually refined from [9],  

compared with (6) – processed RVA data from the MRZR point 

 

Таблица 1. Список параметров, управляющих ходом алгоритма IP-LM в различных экспериментах 

(рис. 2), результаты решения обратных задач как вектор оптимальных значений X и 

коэффициенты подобия с обработанными экспериментальными данными ОАР 
 

Table 1. List of parameters used to control the IP-LM algorithm in different experiments (Fig. 2), the 

results of solving inverse problems as a vector of optimal values X and similarity coefficients based on 

processed experimental RVA data. 
 

 Кривая (1), 
красная 

Кривая (2), 
зеленая 

Кривая (3), 

оранжевая 

Кривая (4), 

фиолетовая 

«Эталонная» (5), 

синяя 
(0)X  [1.5, 8.1] [0.9, 9] [0.05, 0.1] [0.05, 1.5] – 

X  [0.001, 0.005] [0.001, 0.05] [0.01, 0.02] [0.01, 0.02] – 

c  1.1 1 1.1 1.1 – 
v  2000 5 2000 100 – 

  10-5 10-4 10-5 10-6 – 

X  [1.32, 7.182] [0.9, 9.039] [0.698, 1.438] [0.568, 2.501] [1, 9.425] 

R2 74% 81% 75% 67% 81% 

R 87% 93% 89% 89% 93% 
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Результаты решения обратной задачи, полученные в виде модельных (рис. 2, кривые 3–4) и 

(рис. 3, кривые 3–4), более правдоподобны. Во-первых, (0)X , начальное приближение, 

было взято 1%  от оценки максимальных возможных значений X  согласно [24]. Во-

вторых, это показывает то, что кривые (рис. 2, кривые 3–4) описывают обработанные 

экспериментальные данные ОАР (рис. 2, кривая 6) с высокой степенью подобия, близкой к 

эталонному решению прямой задачи (рис. 2, кривая 5). В-третьих, несмотря то, что (рис. 3, 

кривые 3–4) не имеют колебательного характера, как (рис. 3, кривая 5), сохраняется 

главное преимущество эредитарной ( )t -модели – описание переменной нелокальности 

процесса, как и сохраняется тенденция в увеличении значений ( )t  со временем, пусть и 

ценой небольшой потери в точности описания экспериментальных данных ОАР. 
 

 
 

Рис. 3. Вид восстанавливаемой (8) сеточной функции ( , )i X : (1–4) – как результат решения 

обратной задачи при различных управляющих параметрах (см. таблицу 1);  

(5) – «эталонный» вариант, подработанный вручную из [9] 
 

Fig. 3. Type of recovered (8) grid function ( , )i X : (1–4) – as a result of solving 

 the inverse problem for various control parameters (see Table 1);  

(5) – ‘reference’ version, manually adjusted from [9] 
 

Все расчеты в этой статье проводились на ЭВМ, расположенной в ИКИР ДВО РАН в 

лаборатории ЛЭМИ, со следующими характеристиками: CPU – AMD Ryzen 9 7950X, 

16 4.5 GHz core, cache L2 16 Mb & L3 64 Mb; RAM – 96 Gb; GPU – GeForce RTX 4090, 

24 Gb, 2235 MHz, ALU 16384. 
 

ВЫВОДЫ 
 

Из результатов можно сделать вывод о возможности решения на основе эксперименталь-

ных данных обратной задачи для эредитарной ( )t -модели объемной активности радона с це-

лью идентификации оптимальных значений функции ( )t  порядка дробной производной, ха-

рактеризующей интенсивность процесса переноса радона, зависящей от двух неизвестных па-

раметров. Получаемые результаты математического моделирования правдоподобны, однако 

сильно зависят от начального приближения вектора восстанавливаемых значений. 
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