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Аннотация. В работе исследуется функционально-интегральное уравнение с оператором 

дробного интегрирования и оператором инволюции, возникающие при решении краевых задач для 

дифференциальных уравнений, содержащих композицию лево- и правосторонних дробных производных, 

лежащих в основе математических моделей различных физических и геофизических процессов, и 

в том числе при описании диссипативных колебательных систем.  

Цель исследования – исследование функционально-интегрального уравнения с оператором 

дробного интегрирования и оператором инволюции в критическом случае.  

Методы исследования. Для решения поставленной задачи использованы методы теории 

интегральных уравнений первого рода, методы теории операторов и свойства вполне монотонных 

функций. 

Результаты. Показано, что изучаемое уравнение эквивалентно редуцируется к вопросу о 

разрешимости интегрального уравнения первого рода с разностным положительным ядром в классе 

функций, меняющих знак под действием оператора инволюции, для которого доказана теорема 

о единственности его решения. 
 

Ключевые слова: функционально-интегральное уравнение, дробный интеграл Римана–Лиувилля, 

инволюция, функция Миттаг-Леффлера, положительный оператор, вполне монотонная функция 

 
Поступила  10.10.2025,          одобрена  после  рецензирования  12.11.2025,         принята  к  публикации  17.11.2025 

 

Для цитирования. Энеева Л. М. О единственности решения функционально-интегрального уравнения дробного 

порядка с инволюцией // Известия Кабардино-Балкарского научного центра РАН. 2025. Т. 27. № 6. С. 39–46. 

DOI: 10.35330/1991-6639-2025-27-6-39-46 

 
MSC: 26A33, 34B05                                                                                                              Original article                                                                                                        

 

On uniqueness of solution to functional-integral equation 

of fractional order with involution 
 

L.M. Eneeva 
 

Institute of Applied Mathematics and Automation –  

branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences 

89 A, Shortanov street, Nalchik, 360000, Russia  

 

Abstract. The paper studies a functional integral equation with a fractional integration operator and an 

involution operator, which arise when solving boundary value problems for differential equations that 

contain a composition of left- and right-sided fractional derivatives. These equations underlie mathematical 

models of various physical and geophysical processes, such as describing dissipative oscillatory systems. 
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Aim. The study aims to investigate a functional integral equation with an operator of fractional 

integration involving an involution operator in the critical case. 

Research methods. To solve the problem, we employ methods of the theory of integral equations of 

the first kind, operator theory and properties of completely monotone functions. 

Results. It has been shown that the equation under study can be reduced to the problem of solving 

an integral equation of the first kind with a positive kernel, in a class of functions that change sign 

under the action of an operator, and for this class of functions, a theorem on the uniqueness of the 

solution has been proven. 
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ВВЕДЕНИЕ 

 

Рассмотрим уравнение  
 

𝑢(𝑥) + 𝜆 𝑢(1 − 𝑥) + 𝜇 𝐷0𝑥
−𝛼  𝑢(𝑥) = 𝑓(𝑥)               (0 < 𝑥 < 1),                       (1) 

 

 где 𝐷0𝑥
−𝛼  – дробный интеграл Римана–Лиувилля порядка 𝛼 [1],  

 

𝐷0𝑥
−𝛼 𝑢(𝑥) ≔

1

Γ(𝛼)
∫ 𝑢(𝑡)(𝑥 − 𝑡)𝛼−1 

𝑥

0

𝑑𝑡. 

 

Функционально-интегральные уравнения вида (1) возникают при изучении дифферен-

циальных уравнений, содержащих композицию лево- и правосторонних дробных производ-

ных [2]. Необходимость исследовать такие уравнения возникает при моделировании различ-

ных физических и геофизических процессов и, в частности, при описании диссипативных ко-

лебательных систем [3, 4]. В этой связи следует также отметить работы [5, 6], в которых ис-

следовались дифференциальные уравнения дробного порядка с инволюцией. 

В работе [7] найдены достаточные условия на параметры 𝛼, 𝜆 и 𝜇, обеспечивающие од-

нозначную разрешимость уравнения (1). Кроме того, в этой работе показано, что случай 

𝜆2 = ±1 является критическим и приводит к необходимости исследовать системы, содержа-

щие интегральные уравнения первого и второго рода. В данной работе мы исследуем крити-

ческий случай, а именно когда 𝜆 = 1. Для этого случая мы показываем, что вопрос о разре-

шимости уравнения (1) эквивалентен вопросу о разрешимости интегрального уравнения пер-

вого рода с разностным ядром, и доказываем теорему о единственности его решения. 

 

ВСПОМОГАТЕЛЬНЫЕ СВЕДЕНИЯ 
 

Далее, через 𝐼𝑥 будем обозначать оператор инволюции, который действует на функцию 

𝑔(𝑥) по правилу 
 

𝐼𝑥𝑔(𝑥) ≔ 𝑔(1 − 𝑥).                                                             (2) 
 

Далее, 𝒥+ будет обозначать множество функций, инвариантных относительно опера-

ции инволюции 𝐼𝑥, т.е.  
 

𝒥+  =  {𝑔(𝑥):  𝑔(𝑥) =  𝐼𝑥𝑔(𝑥),    0 < 𝑥 < 1}.                                      (3) 
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Аналогично через 𝒥− обозначим множество функций, на которых действие инволюции 

𝐼𝑥 меняет знак, т.е. 
 

𝒥−  =  {𝑔(𝑥):  𝑔(𝑥)  =  −𝐼𝑥𝑔(𝑥),    0 < 𝑥 < 1}.                                      (4) 
 

Из определений (3) и (4) непосредственно следует, что  
 

𝑔(𝑥) + 𝐼𝑥𝑔(𝑥) ∈ 𝒥+              и               𝑔(𝑥) − 𝐼𝑥𝑔(𝑥) ∈ 𝒥− 
 

для любой функции 𝑔(𝑥), определенной в интервале ]0,1[. 
Далее нам понадобится утверждение о действии 𝐼𝑥 на свертку двух функций. 

Лемма 1. Пусть g(𝑥), ℎ(𝑥) ∈ 𝐿(0,1). Имеет место равенство  
 

𝐼𝑥 (∫ 𝑔(𝑥 − 𝑡) ℎ(𝑡)
𝑥

0

𝑑𝑡) = ∫ 𝑔(𝑥 − 𝑡) 𝐼𝑥 ℎ(𝑡)
1

𝑥

𝑑𝑡.                                (5) 

 

Доказательство. Действительно, в силу определения (2) имеем 
 

𝐼𝑥(∫ 𝑔(𝑥 − 𝑡) ℎ(𝑡)
𝑥

0
𝑑𝑡) = ∫ 𝑔(1 − 𝑥 − 𝑡) ℎ(𝑡)

1−𝑥

0
𝑑𝑡. 

 

Сделав замену 𝑠 = 1 − 𝑡, получим 
 

𝐼𝑥 (∫ 𝑔(𝑥 − 𝑡) ℎ(𝑡)
𝑥

0

𝑑𝑡) = ∫ 𝑔(𝑠 − 𝑥) ℎ(1 − 𝑠)
1

𝑥

𝑑𝑠. 

 

Полученное равенство эквивалентно (5). □ 

 
РЕДУКЦИЯ К ИНТЕГРАЛЬНОМУ УРАВНЕНИЮ 

 

С учетом определения (2) уравнение (1) в рассматриваемом случае 𝜆 = 1 примет вид  
 

𝑢(𝑥) + 𝐼𝑥𝑢(𝑥) + 𝜇 𝐷0𝑥
−𝛼  𝑢(𝑥) = 𝑓(𝑥).                                                     (6) 

 

Пусть 𝑢(𝑥) – решение уравнения (6). Перепишем (6) в виде 
 

𝑢(𝑥) + 𝐼𝑥𝑢(𝑥) = 𝐹(𝑥),                                                                 (7) 
 

где 
 

𝐹(𝑥) = 𝑓(𝑥) − 𝜇 𝐷0𝑥
−𝛼  𝑢(𝑥).                                                           (8) 

 

Согласно лемме 1 уравнение (7) имеет решение тогда и только тогда, когда 
 

𝐹(𝑥) ∈ 𝒥+.                                                                          (9) 
 

При этом множество решений уравнения (7) совпадает с множеством функций, пред-

ставимых в виде  
 

𝑢(𝑥) =
1

2
𝐹(𝑥) + 𝑔(𝑥),                                                             (10) 

 

где 𝑔(𝑥) – произвольная функция из 𝒥−, т.е. 
 

𝑔(𝑥) ∈ 𝒥−.                                                                     (11) 
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Таким образом, с учетом (8) и (10) получаем, что решение уравнения (6) является 

решением уравнения  
 

𝑢(𝑥) = −
𝜇 

2
𝐷0𝑥

−𝛼  𝑢(𝑥) +
1

2
𝑓(𝑥) + 𝑔(𝑥).               (12) 

 

Решение (12) для любых 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐿(0,1) имеет вид 
 

𝑢(𝑥) =
1

2
𝑓(𝑥) + 𝑔(𝑥) −

𝜇

2
∫ 𝑊(𝑥 − 𝑡) (

1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡,                       (13) 

 

где 

𝑊(𝑥) = 𝑥𝛼−1𝐸𝛼,𝛼 (−
𝜇

2
𝑥𝛼),                                                    (14) 

 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0

 

 

– функция Миттаг-Леффлера. 

Таким образом, всякое решение уравнения (6), если оно существует, должно быть пред-

ставимо в виде (13) для некоторой функции 𝑔(𝑥) ∈ 𝒥−. Однако для того чтобы было верно 

обратное, то есть для того, чтобы функция вида (13) являлась решением (6), необходимо 

выполнение условия (9). Итак, далее наша цель – выяснить, для каких 𝑔(𝑥) функция (13) 

будет удовлетворять условию (9).  

Применим к обеим частям (12) оператор 𝐷0𝑥
−𝛼, после простых преобразований получаем 

 

𝐷0𝑥
−𝛼𝑢(𝑥) = 𝐷0𝑥

−𝛼 [
1

2
𝑓(𝑥) + 𝑔(𝑥) −

𝜇

2
∫ 𝑊(𝑥 − 𝑡) (

1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡] = 

 

= 𝐷0𝑥
−𝛼 [

1

2
𝑓(𝑥) + 𝑔(𝑥)] −

𝜇

2
∫ [𝐷0𝑧

−𝛼𝑊(𝑧)]𝑧=𝑥−𝑡 (
1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡. 

 

Учитывая, что 
 

𝐷0𝑧
−𝛼𝑊(𝑧) = 𝑥2𝛼−1𝐸𝛼,2𝛼 (−

𝜇

2
𝑥𝛼), 

 

имеем 
 

𝐷0𝑥
−𝛼𝑢(𝑥) = ∫ [

(𝑥 − 𝑡)𝛼−1

Γ(𝛼)
−

𝜇

2
(𝑥 − 𝑡)2𝛼−1𝐸𝛼,2𝛼 (−

𝜇

2
(𝑥 − 𝑡)𝛼)] (

1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡. 

 

Принимая во внимание формулу 
 

𝐸𝛼,𝛽(𝑧) =
1

Γ(𝛽)
+ 𝑧𝐸𝛼,𝛼+𝛽(𝑧), 

 

получаем 

𝐷0𝑥
−𝛼𝑢(𝑥) = ∫ 𝑊(𝑥 − 𝑡) (

1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡.                                     (15) 

 

Далее, в силу (8) условие (9) примет вид 
 

𝑓(𝑥) − 𝜇 𝐷0𝑥
−𝛼  𝑢(𝑥) = 𝐼𝑥[𝑓(𝑥) − 𝜇 𝐷0𝑥

−𝛼  𝑢(𝑥)].                                   (16) 
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 Отсюда с учетом (13) и (15) получаем 
 

𝑓(𝑥) − 𝐼𝑥𝑓(𝑥) = 
 

= 𝜇 [𝐼𝑥 ∫ 𝑊(𝑥 − 𝑡) (
1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡 − ∫ 𝑊(𝑥 − 𝑡) (
1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡]. 

 

В силу (5) имеем 
 

𝐼𝑥 ∫ 𝑊(𝑥 − 𝑡) (
1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡 = ∫ 𝑊(𝑡 − 𝑥) (
1

2
𝑓(1 − 𝑡) + 𝑔(1 − 𝑡))

1

𝑥

𝑑𝑡. 

 

Следовательно,  
 

𝑓(𝑥) − 𝐼𝑥𝑓(𝑥) = 
 

= 𝜇 [∫ 𝑊(𝑡 − 𝑥) (
1

2
𝐼𝑡𝑓(𝑡) + 𝐼𝑡𝑔(𝑡))

1

𝑥

𝑑𝑡 − ∫ 𝑊(𝑥 − 𝑡) (
1

2
𝑓(𝑡) + 𝑔(𝑡))

𝑥

0

𝑑𝑡]. 

 

Согласно (11) имеет место равенство 𝐼𝑡𝑔(𝑡) = −𝑔(𝑡). С учетом этого после простых 

преобразований приходим к соотношению 
 

∫ 𝑊(|𝑥 − 𝑡|)𝑔(𝑡)
1

0

𝑑𝑡 = ℎ(𝑥),                                                    (17) 

 

где 
 

ℎ(𝑥) = −
1

𝜇
[𝑓(𝑥) − 𝐼𝑥𝑓(𝑥)] −

1

2
∫ 𝑊(𝑥 − 𝑡)𝑓(𝑡)

𝑥

0

𝑑𝑡 +
1

2
∫ 𝑊(𝑡 − 𝑥)𝐼𝑡𝑓(𝑡)

1

𝑥

𝑑𝑡. 

 

Сформулируем полученное в виде утверждения.  

Лемма 2. Пусть 𝑓(𝑥) ∈ 𝐿(0,1). Уравнение (6) имеет решение 𝑢(𝑥) ∈ 𝐿(0,1) тогда и 

только тогда, когда уравнение (17) имеет решение 𝑔(𝑥) в классе 𝐿(0,1) ∩ 𝒥−. В этом слу-

чае для каждой функции 𝑔(𝑥) ∈ 𝐿(0,1) ∩ 𝒥−, являющейся решением уравнения (17), реше-

ние 𝑢(𝑥) имеет вид (13). 

Доказательство. Действительно, вопрос о разрешимости уравнения (6), как следует из 

(13), эквивалентен существованию функции 𝑔(𝑥) из класса 𝒥−, которая обеспечивает вы-

полнение условия (9), или, что то же самое, при которой справедливо равенство (16). По-

следнее, как показано выше, эквивалентно разрешимости (17). □ 

 

ЕДИНСТВЕННОСТЬ РЕШЕНИЯ 
 

Как известно, функция Миттаг-Леффлера 𝐸𝛼,𝛽 (−𝑥) является вполне монотонной при 

𝑥 > 0, если 𝛼 ∈]0,1[ и 𝛽 ≥ 𝛼  (см. [8, 9]). Из свойств вполне монотонных функций (см. [10]) 

следует, что функция 𝑊(𝑥), заданная равенством (14), также является вполне монотонной, 

если 𝜇 > 0. Отсюда, в частности, следует, что 
 

𝑊(𝑥) > 0,         𝑊′(𝑥) < 0         и        𝑊′′(𝑥) > 0             (𝑥 > 0).                     (18) 
 

Неравенства (18) позволяют заключить, что функция 𝑊(𝑥) образует симметричное ядро 

положительного оператора в 𝐿2(0,1). Более точно пусть  
 

𝑄𝑔(𝑥) ≔ ∫ 𝑊(|𝑥 − 𝑡|) 𝑔(𝑡)
1

0

 𝑑𝑡                                                 (19) 
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и  

𝐽(𝑔) ≔ ∫ 𝑔(𝑥)
1

0

𝑄𝑔(𝑥)𝑑𝑥.                                                           (20) 

 

Тогда [1, с. 38] 
 

𝐽(𝑔) ≥ 0             и          𝐽(𝑔) = 0   ⇔     𝑔(𝑥) ≡ 0.                                   (21) 
 

Теорема. Пусть 
1

2
< 𝛼 < 1 и 𝜇 > 0. Уравнение (6) не может иметь более одного реше-

ния 𝑢(𝑥) ∈ 𝐿2(0,1).  

Доказательство. Предположим, что уравнение (6) имеет два различных решения 

𝑢1(𝑥), 𝑢2(𝑥) ∈ 𝐿2(0,1). Тогда в силу линейности (6) их разность 𝑢(𝑥) = 𝑢1(𝑥) − 𝑢2(𝑥) бу-

дет решением однородного уравнения 
 

𝑢(𝑥) + 𝐼𝑥𝑢(𝑥) + 𝜇 𝐷0𝑥
−𝛼  𝑢(𝑥) = 0. 

 

В этом случае в силу леммы 2 𝑢(𝑥) будет иметь вид  
 

𝑢(𝑥) = 𝑔(𝑥) −
𝜇

2
∫ 𝑊(𝑥 − 𝑡) 𝑔(𝑡)

𝑥

0

𝑑𝑡,                                          (22) 

 

где функция 𝑔(𝑥) является решением уравнения 
 

∫ 𝑊(|𝑥 − 𝑡|)𝑔(𝑡)
1

0

𝑑𝑡 = 0                                                            (23) 

 

из класса 𝐿2(0,1) ∩ 𝒥−. Умножая уравнение (23) на 𝑔(𝑥) и интегрируя затем по 𝑥 в пределах 

от 0 до 1, принимая во внимание обозначения (19) и (20), получаем, что 𝐽(𝑔) = 0. Отсюда 

в силу (19) следует, что 𝑔(𝑥) ≡ 0. С учетом (22) это означает, что 𝑢(𝑥) ≡ 0, или, что то же 

самое, 𝑢1(𝑥) ≡ 𝑢2(𝑥). Таким образом, предположение о существовании двух различных ре-

шений неверно. Это завершает доказательство теоремы. □ 

 

О СУЩЕСТВОВАНИИ РЕШЕНИЯ 
 

В завершение отметим следующее. Из (21) следует, что симметричное ядро 𝐾(𝑥, 𝑡) =
𝑊(|𝑥 − 𝑡|) является замкнутым в 𝐿2(0,1) и, следовательно, его собственные функции обра-

зуют полную ортогональную систему в 𝐿2(0,1). Отсюда в силу теоремы Пикара (см. [11,  

c. 51]), можем заключить, что интегральное уравнение (17) имеет решение для таких функ-

ций ℎ(𝑥), которые являются истокопредставимыми с помощью ядра 𝐾(𝑥, 𝑡). Однако для 

дальнейшего построения решения уравнения (6) с помощью формулы (13) необходимо, 

чтобы функция 𝑔(𝑥), найденная как решение уравнения (17), принадлежала 𝒥−, то есть 

удовлетворяла соотношению 𝑔(𝑥) = −𝐼𝑥 𝑔(𝑥). Это поднимает вопрос о необходимости до-

полнительных требований к функции ℎ(𝑥) и, следовательно, к функции 𝑓(𝑥) и заслужи-

вает отдельного исследования. 
 

ЗАКЛЮЧЕНИЕ 
 

Таким образом, проведено исследование уравнения (1) в случае 𝜆 = 1, который является 

для рассматриваемого уравнения критическим. Показано, что в данном случае разреши-

мость этого уравнения эквивалентна разрешимости интегрального уравнения (17) в классе 

функций 𝐿(0,1) ∩ 𝒥−. Показано, что симметричное ядро 𝐾(𝑥, 𝑡) уравнения (17) образует 

положительный оператор. На основе этого факта доказана теорема о единственности рассмат-

риваемого уравнения. Более того, показано, что ядро 𝐾(𝑥, 𝑡) является замкнутым, то есть 
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соответствующие ему собственные функции образуют полную ортогональную систему в 

𝐿2(0,1). Однако этого оказывается недостаточным для того, чтобы сделать содержательные 

выводы о существовании решения, и этот вопрос требует дополнительного изучения. 

 

СПИСОК ЛИТЕРАТУРЫ 
 

1. Нахушев  А. М. Дробное исчисление и его применение. М.: ФИЗМАТЛИТ, 2003. 272 с. 

EDN: UGLEPD 

2. Энеева Л. М. К вопросу о решении смешанной краевой задачи для уравнения с 

производными дробного порядка с различными началами // Доклады Адыгской международной 

академии наук. 2023. Т. 23. № 4. С. 62–68. DOI: 10.47928/1726-9946-2023-23-4-62-68 

3. Рехвиашвили С. Ш. Формализм Лагранжа с дробной производной в задачах механики // 

Письма в журнал технической физики. 2004. Т. 30. № 2. С. 33–37. EDN: RDBIHN 

4. Рехвиашвили С. Ш. К определению физического смысла дробного интегро-

дифференцирования // Нелинейный мир, 2007. Т. 5. № 4. С. 194–197. EDN: IAWYWN 

5. Энеева Л. М. Задача Коши для уравнения дробного порядка с инволюцией // 

Вестник КРАУНЦ. Физико-математические науки. 2024. Т. 48. № 3. C. 43–55. DOI: 

10.26117/2079-6641-2024-48-3-43-55 

6. Энеева Л. М. Начальная задача для уравнения дробного порядка с производной 

Герасимова–Капуто с инволюцией // Известия Кабардино-Балкарского научного центра 

РАН. 2024. Т. 26. № 6. С. 19–25. DOI: 10.35330/1991-6639-2024-26-6-19-257. EDN: BOUNKR 

7. Энеева  Л. М.  Интегральное  уравнение  дробного  порядка  с  инволюцией  // Вестник 

КРАУНЦ. Физико-математические науки. 2025. Т. 52. № 3. C. 63–74. EDN: EOPADJ. 

DOI: 10.26117/2079-6641-2025-52-3-63-74 

8.  Джрбашян М. М., Багиян Р. А. Об интегральных представлениях и мерах, ассоциированных 

с функциями типа Миттаг-Леффлера // Известия Академии наук Армянской ССР. Математика. 

1975. Т. 10. № 6. С. 483–508. 

9. Джрбашян М. М., Багиян Р. А. Об интегральных представлениях и мерах, 

ассоциированных с функциями типа Миттаг-Леффлера // Доклады Академии наук СССР. 

1975. Т. 223. № 6. С. 1297–1300. 
10. Miller K. S., Samko S. G. Completely monotonic functions // Integral Transforms and 

Special Functions. 2001. Vol. 12. No 4. Pp. 389–402. DOI: 10.1080/10652460108819360 

11. Bitsadze A. V. Integral Equations of First Kind. Singapore: World Scientific, 1995. 265 p. 

ISBN10: 9810222637 
 

REFERENCES 
 

1. Nakhushev A.M. Drobnoye ischisleniye i yego primeneniye [Fractional Calculus and its 

Application]. Moscow: FIZMATLIT, 2003. 272 p. EDN: UGLEPD. (In Russian) 

2. Eneeva L.M. On the question of solving a mixed boundary value problem for an equation 

with fractional derivatives with different origins. Reports of the Adyghe (Circassian) International 

Academy of Sciences. 2023. Vol. 23. No. 4. Pp. 62–68. DOI: 10.47928/1726-9946-2023-23-4-62-68. 

(In Russian) 

3. Rekhviashvili S.Sh. Lagrange formalism with fractional derivative in problems of mechanics. 

Technical Physics Letters. 2004. Vol. 30. No. 2. Pp. 33–37. EDN: RDBIHN. (In Russian) 

4. Rekhviashvili S.Sh. Fractional derivative physical interpretation. Nonlinear World. 2007. 

Vol. 5. No. 4. Pp. 194–197. EDN: IAWYWN. (In Russian) 

5. Eneeva L.M. Cauchy problem for fractional order equation with involution. Vestnik KRAUNC. 

Fiz.-mat. nauki. 2024. Vol. 48. No. 3. Pp. 43–55. DOI: 10.26117/2079-6641-2024-48-3-43-55. 

EDN: RHKXQA. (In Russian) 



MATHEMATICS AND MECHANICS 

 

46                                                  News of the Kabardino-Balkarian Scientific Center of RAS   Vol. 27   No. 6   2025 

6. Eneeva L.M. Initial value problem for a fractional order equation with the Gerasimov–

Caputo derivative with involution. News of the Kabardino-Balkarian Scientific Center of RAS. 

2024. Vol. 26. No. 6. Pp. 19–25. DOI: 10.35330/1991-6639-2024-26-6-19-25. EDN: BOUNKR. 

(In Russian) 

7. Eneeva L.M. Fractional integral equation with involution. Vestnik KRAUNC. Fiz.-mat. nauki. 

2025. Vol. 52. No. 3. Pp. 63–74. EDN: EOPADJ. DOI: 10.26117/2079-6641-2025-52-3-63-74. 

(In Russian) 

8. Dzhrbashyan M.M., Bagiyan R.A. On integral representations and measures associated with 

Mittag-Leffler type functions. Izvestiya Academii nauk Armynskoi SSR. Matematika. 1975. 

Vol. 10. No. 6. Pp. 483–508. (In Russian) 

9. Dzhrbashyan M.M., Bagiyan R.A. On integral representations and measures associated 

with functions of Mittag-Leffler type. Doklady Akademii nauk SSSR. 1975. Vol. 223. No. 6. 

Pp. 1297–1300. (In Russian) 

10. Miller K.S., Samko S.G. Completely monotonic functions. Integral Transforms and 

Special Functions. 2001. Vol. 12. No 4. Pp. 389–402. DOI: 10.1080/10652460108819360 

11. Bitsadze A.V. Integral equations of first kind. Singapore: World Scientific, 1995. 265 p. 

ISBN10: 9810222637 
 

 

Финансирование. Работа выполнена в рамках государственного задания Института прикладной 

математики и автоматизации – филиала Кабардино-Балкарского научного центра Российской 

академии наук (тема № 125031904215-5). 
 

Funding. The work was carried out within the framework of state assignments of Institute of Applied 

Mathematics and Automation – branch of Kabardino-Balkarian Scientific Center of the Russian Academy 

of Sciences (theme No. 125031904215-5). 
 

 

Информация об авторе 
 

Энеева Лиана Магометовна, канд. физ.-мат. наук, ст. науч. сотр. отдела математического 

моделирования геофизических процессов, Институт прикладной математики и автоматизации – 

филиал Кабардино-Балкарского научного центра Российской академии наук; 

360000, Россия, г. Нальчик, ул. Шортанова, 89 А; 

eneeva72@list.ru, ORCID: https://orcid.org/0000-0003-2530-5022, SPIN-код: 3403-8412 
 

 

Information about the author 
 

Liana M. Eneeva, Candidate of Physics and Mathematics, Senior Researcher, Department of Mathematical 

Modeling of Geophysical Processes, Institute of Applied Mathematics and Automation – branch of the 

Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences; 

89 A, Shortanov street, Nalchik, 360000, Russia;  

eneeva72@list.ru, ORCID: https://orcid.org/0000-0003-2530-5022, SPIN-code: 3403-8412 

 

 

https://orcid.org/0000-0003-2530-5022
https://orcid.org/0000-0003-2530-5022

