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Аннотация. В работе рассматривается обращение преобразования Лапласа одной функции, 

содержащей гиперболический тангенс. Указанная функция возникает при решении краевой задачи в 

ограниченной области с условиями второго и третьего рода для уравнения теплопроводности.  

Цель исследования – обращение преобразования Лапласа функции, возникающей при решении 

краевой задачи с условиями второго и третьего рода для уравнения теплопроводности. 

Результаты. Используя теорему о вычетах и методы теории функций комплексного переменного, 

получили обращение рассматриваемой функции в двух формах, пригодных для больших и малых 

значений времени. В первом случае обратное преобразование записывается в виде ряда из  

экспоненциальных функций с постоянными коэффициентами, во втором случае – в виде ряда из 

сверток Лапласа специальных функций.  

Выводы и заключение. Полученные результаты могут быть использованы при построении 

решения краевой задачи для уравнения теплопроводности в ограниченной области с условием 

второго рода на одной из границ и условием третьего рода – на другой в форме, пригодной для 

малых значений времени. В теории уравнений математической физики решение аналогичной задачи 

построено методом разделения переменных в форме, хорошо описывающей процессы теплопередачи 

для больших значений времени. Но такая форма оказывается неудобной в случае малых значений 

времени по причине плохой сходимости ряда Фурье по собственным функциям задачи. 
 

Ключевые слова: преобразование Лапласа, теорема о вычетах, лемма Жордана, гиперболический 

тангенс, интеграл вероятности, полиномы Лагерра 

 
Поступила  30.10.2025,         одобрена  после  рецензирования  25.11.2025,        принята  к  публикации  02.12.2025 

 
Для цитирования. Хуштова Ф. Г. Об обращении преобразования Лапласа одной функции, содержащей 

гиперболический тангенс // Известия Кабардино-Балкарского научного центра РАН. 2025. Т. 27. № 6. С. 30–38. 

DOI: 10.35330/1991-6639-2025-27-6-30-38 

 
MSC: 44A10                                                                                                                          Original article                                                                                                        

 

On inversion of Laplace transform of function,  

involving hyperbolic tangent 
 

F.G. Khushtova 
 

Institute of Applied Mathematics and Automation –  

branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences 

89 A, Shortanov street, Nalchik, 360000, Russia  

 

©   Хуштова Ф. Г., 2025 
 



МАТЕМАТИКА И МЕХАНИКА 

 

Известия Кабардино-Балкарского научного центра РАН   Том 27   № 6   2025                                               31 

Abstract. The paper examines the inverse of the Laplace transform with a hyperbolic tangen function. 

This function arises when solving a boundary value problem in a bounded domain governed by the heat 

equation, subject to boundary conditions of the second and third kind. 

Aim. To determine the inverse Laplace transform of a function that emerges from solving a boundary 

value problem, specifically a second or third type condition, associated with the heat equation 

Results. Using the residue theorem and the theory of a complex variable functions, we derive the 

inverse transform, suitable for large and small time values. In the first case, the inverse transform is 

expressed as a series of exponential functions with constant coefficients; in the second case, as a series of 

Laplace convolutions of special functions. 

Conclusion and deduction. The derived results constitute a basis for constructing a solution to the 

boundary value problem for the heat equation in a bounded domain with a second-order condition on one 

of the boundaries and a third-order condition on the other, in a form suitable for small time values. In the 

context of mathematical physics, a solution to a similar problem is derived via separation of variables 

suitable for characterizing heat transfer processes for large time values. However, this proves 

inconvenient given sufficiently small temporal values, due to poor convergence properties pertaining to 

the Fourier series expansion involving eigenfunctions of the problem. 
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ВВЕДЕНИЕ 

 

Методы интегральных преобразований остаются одними из наиболее эффективных 

методов решения различных линейных дифференциальных и интегральных уравнений, 

возникающих в прикладных задачах математики, математической физики, механики и 

других областях науки. Наличие большого количества таблиц и справочников по инте-

гральным преобразованиям значительно упрощает процесс нахождения решения иссле-

дуемых задач.  

В некоторых случаях, если функция, прообраз которой нужно вычислить, отсутствует 

в современных таблицах и справочниках по интегральным преобразованиям, разрешить 

проблему в терминах известных функций позволяет теорема о вычетах и использование 

других важных теорем теории функций комплексного переменного.  

При решении операционными методами задач для уравнения теплопроводности важ-

ное место занимает преобразование Лапласа.  

В данной работе рассмотрим обращение преобразования Лапласа функции, возника-

ющей при решении краевой задачи с условиями второго и третьего рода для уравнения 

теплопроводности [1]. 

 
1. ВСПОМОГАТЕЛЬНЫЕ СВЕДЕНИЯ 

 

Как известно, преобразование Лапласа ставит в соответствие функции 𝑓(𝑡) действи-

тельной переменной  𝑡 функцию 𝑓(𝑠) комплексной переменной 𝑠 с помощью интеграла 

[2, c. 30; 3, c. 211; 4, c. 33] 
 

𝑓‾(𝑠) = ∫ 𝑒−𝑠𝑡∞

0
𝑓(𝑡)𝑑𝑡.     (1) 
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Если функция 𝑓(𝑡) кусочно-непрерывна при 𝑡 ≥ 0，𝑓(𝑡)  ≡  0 при 𝑡 < 0，имеет огра-

ниченную степень роста, то есть существуют такие положительные постоянные 𝐴 и 𝜎, 

что для всех 𝑡 > 0 
 

|𝑓(𝑡)| ≤ 𝐴𝑒𝜎𝑡 , 
 

то интеграл (1) сходится в области Re𝑠 > 𝜎, причем в области Re𝑠 ≥ 𝜎0 > 𝜎 этот интеграл 

сходится равномерно. 

Класс функций 𝑓(𝑡), допускающих преобразование Лапласа, может быть расширен. 

Пусть функция 𝑓(𝑡) определена для всех 𝑡 ≥ 0 и существует такое комплексное число 𝑠0, 

что сходится интеграл 

∫ 𝑒−𝑠0𝑡

∞

0

𝑓(𝑡)𝑑𝑡 < 𝑀. 

 

Тогда для всех 𝑠, удовлетворяющих условию  Re𝑠 > Re𝑠0, сходится интеграл (1). 

Функция 𝑓‾(𝑠), определенная через функцию 𝑓(𝑡) с помощью преобразования (1), 

называется изображением Лапласа 𝑓(𝑡) функции 𝑓(𝑡). Функция 𝑓(𝑡) называется ориги-

налом функции 𝑓(𝑠). Связь функций 𝑓(𝑡) и 𝑓(𝑠) символически обозначают следующим 

образом: 
 

𝑓(𝑡) ≓ 𝑓‾(𝑠) или 𝑓‾(𝑠) ≓ 𝑓(𝑡). 
 

Если известно изображение 𝑓(𝑠), то формула обратного преобразования Лапласа 
 

𝑓(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝑠𝑡𝛾+𝑖∞

𝛾−𝑖∞
𝑓‾(𝑠)𝑑𝑠,  𝛾 > 𝜎              (2) 

 

определяет функцию 𝑓(𝑡) в точках ее непрерывности. Формула (2) называется формулой 

Меллина. 

Приведем здесь некоторые свойства преобразования Лапласа, необходимые для 

дальнейшего исследования. 

1. Изображение производной. Если функция 𝑓′(𝑡) удовлетворяет условиям существо-

вания изображения и 𝑓(𝑡) ≓ 𝑓(𝑠)，то 
 

𝑓′(𝑡) ≓ 𝑠𝑓‾(𝑠) − 𝑓(0).     (3) 
 

2. Изображение свертки. Если 𝑓1(𝑡) ≓ 𝑓1(𝑠) ， 𝑓2(𝑡) ≓ 𝑓2(𝑠)，то 
 

𝑓1(𝑡) ∗ 𝑓2(𝑡) = ∫ 𝑓1
𝑡

0
(𝜏)𝑓2(𝑡 − 𝜏)𝑑𝜏 ≓ 𝑓‾1(𝑠)𝑓‾2(𝑠).          (4) 

 

3. Изображение интеграла с весовой функцией. Если 𝑓(𝑡) ≓ 𝑓(𝑠)，то 
 

∫ 𝑓
∞

0
(𝜏)𝜒(𝜏, 𝑡)𝑑𝜏 ≓

1

√𝑠
 𝑓‾(√𝑠),  𝜒(𝜏, 𝑡) =

1

√𝜋𝑡
 𝑒−

𝜏2

4𝑡 .            (5) 

 
ИЗОБРАЖЕНИЯ НЕКОТОРЫХ ФУНКЦИЙ 

 

Известно, что [6, c. 220] 
 

𝜒(𝛼, 𝑡) ≓
1

√𝑠
 𝑒−𝛼√𝑠,  𝛼 ≥ 0.         (6) 

Пусть  

Erfc(𝑥) =
2

√𝜋
∫ 𝑒−𝜏2

∞

𝑥

𝑑𝜏 
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 – интеграл вероятности [6, c. 333; 8, c.30]. Справедливо изображение [6, c. 210] 
 

1

√𝜋𝑡
− 𝛼𝑒𝛼2𝑡Erfc(𝛼√𝑡) ≓

1

√𝑠+𝛼
.          (7) 

 

Пусть 
 

𝐿𝑛(𝑡) =
𝑒𝑡

𝑛!

𝑑𝑛

𝑑𝑡𝑛
(𝑡𝑛𝑒−𝑡),  𝑛 = 0,1,2, …, 

 

– полиномы Лагерра [7, c.188; 8, c. 100]. Имеет место формула [2, c. 421; 6, c. 158] 
 

𝑒𝛼𝑡𝐿𝑛(𝛽𝑡) ≓
(𝑠−𝛽−𝛼)𝑛

(𝑠−𝛼)𝑛+1 ,  Re 𝑠 > 𝛼.              (8) 

 
2. ОСНОВНЫЕ РЕЗУЛЬТАТЫ 

 

Пусть  𝑎 ≥ 0， 𝑙 > 0. Обозначим 𝐸(𝑎, 𝑙; 𝑡) ≡ 𝐸(𝑡),  𝐸‾(𝑎, 𝑙; 𝑠) ≡ 𝐸‾(𝑠) и рассмотрим кон-

турный интеграл 
 

𝐸(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝑡𝑠𝛾+𝑖∞

𝛾−𝑖∞
𝐸‾(𝑠) 𝑑𝑠,  𝛾 > 0,                (9) 

 

где 
 

𝐸‾(𝑠) =
1

√𝑠th√𝑠𝑙+𝑎
.                     (10) 

 

Вычислим интеграл (9). Для этого исследуем подынтегральную функцию (10). Функция 

(10) является однозначной функцией от 𝑠, полюсы ее – корни уравнения 
 

th√𝑠𝑙 = −
𝑎

√𝑠
.                  (11) 

 

Известно [9, c. 117], что уравнение (11) имеет только действительные корни, причем все 

корни – простые, и они расположены вдоль оси Re𝑠 < 0. Обозначим 𝑠 = −𝜆2. Тогда урав-

нение (11) перепишется в виде 
 

ctg𝜆𝑙 =
𝜆

𝑎
.                (12) 

 

Функция 𝑦1(𝜆) = ctg𝜆𝑙 является нечетной периодической функцией, убывающей на каж-

дом интервале (𝜋𝑛/𝑙, 𝜋(𝑛 + 1)/𝑙)， 𝑛 ∈ ℤ . Функция 𝑦2(𝜆) = 𝜆/𝑎 является нечетной 

возрастающей функцией. Поэтому уравнение (12) имеет бесчисленное множество попар-

но противоположных по знаку и равных по абсолютному значению корней 𝜆, причем 

каждый последующий корень больше предыдущего: 
 

𝜆0 < 𝜆1 < 𝜆2 <. . . < 𝜆𝑛 <. .. 
 

Так как 𝑠𝑛 = −𝜆𝑛
2 , то рассмотрим только положительные значения корней 𝜆𝑛. 

Для вычисления 𝐸(𝑡) рассмотрим интеграл 
 

∫ 𝑒𝑡𝑠
𝐶

𝐸‾(𝑠) 𝑑𝑠, 
 

по контуру 𝐶, изображенному на рис. 1 и состоящему из отрезка 𝐴𝐵, параллельного мни-

мой оси, и левой полуокружности 𝐶𝑅 радиуса 𝑅. 
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   Pиc. 1. / Fig. 1. 

 

Выберем радиус полуокружности 𝑅 = 𝑛2𝜋2/𝑙2, если 𝑎 ≠ 0, и 𝑅 = (𝑛 + 1/2)2𝜋2/𝑙2, если 

𝑎 = 0. В этом случае ни один из полюсов не будет лежать на 𝐶𝑅. При 𝑛 → ∞  интеграл по 

отрезку 𝐴𝐵 перейдет в искомый интеграл (9), а интеграл по полуокружности 𝐶𝑅 согласно 

лемме Жордана и в силу предельного соотношения 
          

lim
|𝑠|→+∞

𝑠∈𝐶𝑅

√𝑠𝐸‾(𝑠) = 1 

 

обратится в нуль. По теореме о вычетах [2, с. 47] получаем 
 

𝐸(𝑡) = ∑ Res
𝑠=𝑠𝑛

∞

𝑛=0

[𝑒𝑡𝑠𝐸‾(𝑠)]. 

 

Пусть 

𝛷(𝑠) = ch√𝑠𝑙, 
 

𝛹(𝑠) = √𝑠 sh√𝑠𝑙 + 𝑎 ch√𝑠𝑙.    (13) 
 

Тогда функцию  𝐸‾(𝑠) можно представить в виде отношения двух обобщенных полиномов 

𝛷1(𝑠) = 𝑠𝛷(𝑠) и 𝛹1(𝑠) = 𝑠𝛹(𝑠), 𝑠 ≠ 0: 
 

𝐸‾(𝑠) =
𝛷1(𝑠)

𝛹1(𝑠)
. 

 

Известно, что [10, c. 109] 
 

lim
𝑠→𝑠𝑛

𝛷1(𝑠)

𝛹1′(𝑠)
= lim

𝑠→𝑠𝑛

𝛷(𝑠)

𝛹′(𝑠)
, 
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где 𝑠𝑛 – корни уравнения 𝛹(𝑠) = 0. Вычеты функции 𝑒𝑡𝑠𝐸(𝑠) можно найти по формуле 

[2, c. 47; 4, c. 166] 
 

Res
𝑠=𝑠𝑛

[𝑒𝑡𝑠𝐸‾(𝑠)] =
𝛷(𝑠𝑛)

𝛹′(𝑠𝑛)
 𝑒𝑠𝑛𝑡. 

 

Найдем 𝛹′(𝑠𝑛)，учитывая при этом, что  𝑠𝑛 – корни уравнения (11). Из (13) имеем 
 

𝛹′(𝑠) = ch√𝑠𝑙 [
𝑙

2
+

𝑙𝑎 + 1

2√𝑠
th√𝑠𝑙]. 

 

Подставляя вместо  th√𝑠𝑙 выражение (11), можем записать 
 

𝛹′(𝑠) = ch√𝑠𝑙 
𝑙(𝑠 − 𝑎2) − 𝑎

2𝑠
. 

 

Так как 𝑠𝑛 = −𝜆𝑛
2  , где 𝜆𝑛 – корни уравнения (12), то 

 

𝑐𝑛 = lim
𝑠→𝑠𝑛

𝛷(𝑠)

𝛹′(𝑠)
=

2 𝜆𝑛
2

𝑙(𝜆𝑛
2 +𝑎2)+𝑎

.     (14) 

 

Таким образом, обратное преобразование Лапласа функции 𝐸(𝑠) находим в форме 
 

𝐸(𝑡) = ∑ 𝑐𝑛
∞
𝑛=0 𝑒−𝜆𝑛

2 𝑡,  𝑡 > 0,        (15) 
 

где коэффициенты 𝑐𝑛 определяются из (14). 

Учитывая равенство 𝑎 = 𝜆𝑛tg𝜆𝑛𝑙 , коэффициенты 𝑐𝑛 можно записать также в виде 
 

𝑐𝑛 =
2 𝜆𝑛cos2𝜆𝑛𝑙

𝑙𝜆𝑛 + sin𝜆𝑛𝑙cos𝜆𝑛𝑙
. 

 

Получим другую форму записи функции 𝐸(𝑡). Обозначив 𝑝 = √𝑠 и воспользовавшись 

равенством 
 

𝑝 sh 𝑝𝑙 + 𝑎 ch 𝑝𝑙 =
𝑝+𝑎

2
 𝑒𝑝𝑙 (1 −

𝑝−𝑎

𝑝+𝑎
𝑒−2𝑝𝑙),                 (16) 

 

а также представлением 

1

1 − 𝑞
= ∑ 𝑞𝑛

∞

𝑛=0

, |𝑞| < 1, 

 

запишем функцию (10) в виде 
 

𝐸‾(𝑠) = 2ch 𝑝𝑙 ∑
(𝑝−𝑎)𝑛

(𝑝+𝑎)𝑛+1
∞
𝑛=0 𝑒−(2𝑙𝑛+𝑙)𝑝.              (17) 

 

Пусть 

𝑇‾𝑛(𝑠) =
2ch 𝑝𝑙

𝑝
𝑒−(2𝑙𝑛+𝑙)𝑝, 

 

𝑓‾𝑛(𝑎, 𝑠) =
(𝑝 − 𝑎)𝑛

𝑝(𝑝 + 𝑎)𝑛+1
, 𝐸‾𝑛(𝑎, 𝑠) = 𝑠𝑓‾𝑛(𝑎, 𝑠). 
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Тогда функция (17) примет вид 
 

𝐸‾(𝑠) = ∑ 𝑇‾𝑛
∞
𝑛=0 (𝑠)𝐸‾𝑛(𝑎, 𝑠).      (18) 

 

Функцию 𝑇𝑛(𝑠) запишем следующим образом: 
 

𝑇‾𝑛(𝑠) =
1

√𝑠
 𝑒−2𝑙𝑛√𝑠 +

1

√𝑠
 𝑒−(2𝑙𝑛+2𝑙)√𝑠.              (19) 

 

Из формулы (6) следует 
 

𝑇‾𝑛(𝑠) ≓ 𝑇𝑛(𝑡) = 𝜒(2𝑙𝑛, 𝑡) + 𝜒(2𝑙𝑛 + 2𝑙, 𝑡) . 
 

Воспользовавшись формулами (5) и (8), получаем, что  
 

𝑓‾𝑛(𝑎, 𝑠) ≓ ∫ 𝑒−𝑎𝜏

∞

0

𝐿𝑛(2𝑎𝜏)𝜒(𝜏, 𝑡) 𝑑𝜏. 

 

Свойство (3) позволяет нам записать 
 

𝐸‾𝑛(𝑎, 𝑠) ≓ 𝐸𝑛(𝑎, 𝑡) = ∫ 𝑒−𝑎𝜏

∞

0

𝐿𝑛(2𝑎𝜏)𝜒𝑡
′(𝜏, 𝑡) 𝑑𝜏. 

 

Применяя теперь к равенству (18) свойство (4), окончательно находим 
 

𝐸(𝑡) = ∑ 𝑇𝑛
∞
𝑛=0 (𝑡) ∗ 𝐸𝑛(𝑎, 𝑡).    (20) 

 

Таким образом, имеет место следующее утверждение. 

Утверждение. Пусть 𝑎 ≥ 0, 𝑙 > 0. Тогда обратное преобразование Лапласа функции 
 

𝐸‾(𝑠) =
1

√𝑠 𝑡ℎ√𝑠𝑙 + 𝑎
 

 

может быть записано в двух эквивалентных формах: 
 

𝐸(𝑡) = ∑ 𝑐𝑛

∞

𝑛=0

𝑒−𝜆𝑛
2 𝑡, 

где 

𝑐𝑛 =
2 𝜆𝑛

2

𝑙(𝜆𝑛
2 + 𝑎2) + 𝑎

, 

 

𝜆𝑛 – положительные корни трансцендентного уравнения ctg𝜆𝑙 = 𝜆/𝑎, и 
 

𝐸(𝑡) = ∑ 𝑇𝑛

∞

𝑛=0

(𝑡) ∗ 𝐸𝑛(𝑎, 𝑡) , 

 

где 

𝑇𝑛(𝑡) = 𝜒(2𝑙𝑛, 𝑡) + 𝜒(2𝑙𝑛 + 2𝑙, 𝑡) ,  𝜒(𝜏, 𝑡) =
1

√𝜋𝑡
 𝑒−

𝜏2

4𝑡  , 

 

𝐸𝑛(𝑎, 𝑡) = ∫ 𝑒−𝑎𝜏

∞

0

𝐿𝑛(2𝑎𝜏)𝜒𝑡′(𝜏, 𝑡) 𝑑𝜏, 𝐿𝑛(𝜏) =
𝑒𝜏

𝑛!

𝑑𝑛

𝑑𝜏𝑛
(𝜏𝑛𝑒−𝜏). 
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Частные случаи. Если 𝑎 = 0, то 𝜆𝑛 = 𝜋𝑛/𝑙，𝑐𝑛 = 2/𝑏 и функция (15) запишется в виде 
 

𝐸(0, 𝑙; 𝑡) =
2

𝑙
∑ 𝑒−(

𝜋𝑛

𝑙
)

2
𝑡∞

𝑛=0 , 𝑡 > 0.             (21) 
 

При 𝑎 = 0 из (18) находим 
 

𝐸(0, 𝑙; 𝑡) = ∑ 𝑇𝑛

∞

𝑛=0

(𝑡) = ∑[𝜒(2𝑙𝑛, 𝑡) + 𝜒(2𝑙𝑛 + 2𝑙, 𝑡)]

∞

𝑛=0

. 

 

Таким образом, имеет место равенство 
 

2

𝑙
∑ 𝑒−(

𝜋𝑛
𝑙

)
2

𝑡

∞

𝑛=0

=
1

√𝜋𝑡
∑ [𝑒−

𝑙2𝑛2

𝑡 + 𝑒−
𝑙2(𝑛+1)2

𝑡 ]

∞

𝑛=0

,  𝑡 > 0. 

 

Рассмотрим предельный случай 𝑙 = ∞. В этом случае функция (10) принимает вид  
 

𝐸‾(𝑎, ∞; 𝑠) =
1

√𝑠 + 𝑎
. 

 

Из формулы (7) находим 
 

𝐸(𝑎, ∞; 𝑡) =
1

√𝜋𝑡
− 𝑎𝑒𝑎2𝑡Erfc(𝑎√𝑡).           (22) 

 

Если 𝑎 = 0,  𝑙 = ∞，то из (22) следует 𝐸(0, ∞; 𝑡) =
1

√𝜋𝑡
. 
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