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Аннотация. В работе рассматривается нагруженное уравнение Маккендрика – фон Ферстера 

дробного порядка.  

Цель исследования – доказать, что при соблюдении условий регулярности функций начальных 

и граничных условий существует единственное решение нагруженного уравнения в рассматриваемой 

области Ω.  

Методы исследования. Решение найдено путем редуцирования к системе интегральных уравнений 

Вольтерра 2-го рода. Применялся аппарат дробного исчисления. 

Результаты. Доказаны существование и единственность решения нелокальной краевой задачи 

для нагруженного уравнения Маккендрика – фон Ферстера дробного порядка, а также получена 

явная его форма в виде интегральных выражений. 

Выводы. Результаты имеют важное значение для математического моделирования популяционной 

динамики с учетом возрастных аспектов и диффузионных эффектов с памятью, реализуемых через 

дробные производные. Полученные выводы расширяют теоретическую базу для анализа подобных 

дифференциальных уравнений и могут быть использованы для дальнейших исследований в области 

математической биологии и теории дифференциальных уравнений с памятью. 
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Research methods. The convergence towards a solution was achieved via a reduction to a Volterra 

integral equation system, specifically of the second order. Employed the fractional calculus operator. 

Results. Given the McKendrick – von Foerster loaded equation of fractional-order, the existence and 

uniqueness of a solution to a nonlocal boundary value problem is proven. An explicit representation of the 

solution is derived, expressed as integral equations. 

Conclusion. The derived results facilitate mathematical modeling, specifically applied to population 

dynamics. Consider age-structured populations and incorporate diffusion phenomena exhibiting memory 

effects, formally representable via fractional-order derivatives. The derived theorems augment the 

axiomatic foundation for analyzing said differential equations, enabling further investigation in 

mathematical biology and the theory of integro-differential equations. 
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ВВЕДЕНИЕ 

 

В области Ω = {(𝑥, 𝑡): 0 < 𝑥 < 1, 0 < 𝑡 < 𝑇} рассмотрим нагруженное уравнение вида  
 

𝑢𝑥(𝑥, 𝑡) + 𝜆𝜕0𝑡
𝛼 𝑢(𝑥, 𝑡) + ∑ 𝜆𝑘𝑢(𝑥𝑘, 𝑡)𝑛

𝑘=1 = 𝑓(𝑥, 𝑡),               (1) 
 

где 𝜆, 𝜆𝑘 – заданные вещественные числа, 𝜆 ≠ 0, ∑ 𝜆𝑘
𝑛
𝑘=1 ≠ 0, 𝑥𝑘 – фиксированные точки 

внутри интервала (0,1), 𝑓(𝑥, 𝑡) – заданная вещественная функция, 𝜕0𝑡
𝛼 𝑢(𝑥, 𝑡) – регуляризо-

ванная дробная производная Герасимова – Капуто порядка 𝛼, 0 < 𝛼 < 1, определяемая 

равенством [1] 
 

𝜕0𝑡
𝛼 𝑢(𝑥, 𝑡) =

1

Γ(1−𝛼)
∫

𝑢𝜂(𝑥,𝜂)

(𝑡−𝜂)𝛼 𝑑𝜂
𝑡

0
. 

 

Уравнение (1) относится к классу нагруженных дифференциальных уравнений. При  

𝛼 = 1 и 𝜆𝑘 = 0  уравнение (1) называется уравнением неразрывности Маккендрика – фон      

Ферстера [2, с. 244]. 

Уравнение вида (1) при 𝛼 = 1 и 𝜆𝑘 = 0 было рассмотрено многими авторами. Для          

линейного дифференциального уравнения вида (1) с постоянными коэффициентами          

решена задача Коши в прямоугольной области в работе [3]. Для уравнения (1) с оператором 

Римана – Лиувилля с переменными коэффициентами в работе [4] доказана теорема об       

однозначной разрешимости краевой задачи в прямоугольной области, а в работе [5] для 

того же уравнения доказаны теоремы существования и единственности решения задачи 

Коши в нелокальной постановке. В [6] рассмотрена краевая задача для уравнения в частных 

производных дробного порядка, не превосходящего единицу в области с криволинейной 

границей. При 𝛼 = 1 в работе [7] была рассмотрена динамика популяции, основанная на 

возрастной модели, учитывающей эффект «насыщения». 

В работе [8] для уравнения (1) при 𝜆𝑘 = 0 рассмотрена динамика возрастной структуры 

популяции с интегральным условием, а в [9] решена ее обратная задача. 

В работе [10] для уравнения (1) при 𝑘 = 1 была рассмотрена динамика численности     

популяции с возрастной структурой с учетом миграции. 
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В математическом моделировании уравнение (1) можно использовать для описания    

развития замкнутой популяции особей с учетом межвозрастных взаимодействий и мигра-

ционных процессов, где функция 𝑢(𝑥, 𝑡) определяет плотность численности популяции 

возраста x в момент времени t.  

 

ПОСТАНОВКА ЗАДАЧИ 
 

Введем понятие регулярного решения. 

Определение. Регулярным решением уравнения (1) в области 𝛺 назовем функцию        

𝑢 = 𝑢(𝑥, 𝑡) из класса 𝑢(𝑥, 𝑡) ∈ 𝐶(𝛺̅), функция 𝑢(𝑥, 𝑡) непрерывно дифференцируема по 𝑥, 

является абсолютно непрерывной как функция переменной 𝑡 на отрезке [0, 1] при каждом 

𝑥 из интервала (0,1), а также удовлетворяет уравнению (1). 

Исследуется следующая задача 

Задача. В области 𝛺 требуется найти регулярное решение 𝑢(𝑥, 𝑡) уравнения (1),          

удовлетворяющее условиям 
 

𝑢(𝑥, 0) = 𝜏(𝑥),        0 ≤ 𝑥 ≤ 1,     (2) 
 

𝑢(0, 𝑡) = 𝜑(𝑡),        0 ≤ 𝑡 ≤ 𝑇,     (3) 
 

где 𝜏(𝑥), 𝜑(𝑡) – заданные функции. 

 

ПРЕДСТАВЛЕНИЕ РЕШЕНИЯ 
 

Перепишем уравнение (1) в виде  
 

𝑢𝑥(𝑥, 𝑡) + 𝜆𝜕0𝑡
𝛼 𝑢(𝑥, 𝑡) = 𝐹(𝑥, 𝑡),                     (4) 

 

где 

𝐹(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) − ∑ 𝜆𝑘𝑢(𝑥𝑘, 𝑡)𝑛
𝑘=1 .               (5) 

 

Для решения задачи (2), (3) для уравнения (4) воспользуемся представлением решения 

[11, с. 64] 
 

𝑢(𝑥, 𝑡) = ∫ 𝜏(𝜉)𝑡−𝛼𝑒1,𝛼
1,1−𝛼 (−

𝑥−𝜉

𝑡𝛼 ) 𝑑𝜉
𝑥

0
+ ∫ ∫

𝐹(𝜉,𝜂)

𝑡−𝜂

𝑥

0
𝑒1,𝛼

1,0 (−
𝑥−𝜉

(𝑡−𝜂)𝛼) 𝑑𝜉𝑑𝜂
𝑡

0
.           (6) 

 

Подставим (5) в уравнение (6):  
 

                    𝑢(𝑥, 𝑡) + ∫ ∫
∑ 𝜆𝑘𝑢(𝑥𝑘,𝜂)𝑛

𝑘=1

𝑡−𝜂

𝑥

0
𝑒1,𝛼

1,0 (−
𝑥−𝜉

(𝑡−𝜂)𝛼) 𝑑𝜉𝑑𝜂 =
𝑡

0
   

 

= ∫ 𝜏(𝜉)𝑡−𝛼𝑒1,𝛼
1,1−𝛼 (−

𝑥−𝜉

𝑡𝛼
) 𝑑𝜉

𝑥

0
+ ∫ ∫

𝑓(𝜉,𝜂)

𝑡−𝜂

𝑥

0
𝑒1,𝛼

1,0 (−
𝑥−𝜉

(𝑡−𝜂)𝛼
) 𝑑𝜉𝑑𝜂

𝑡

0
.   (7) 

 

После небольших преобразований уравнение (7) перепишем в виде 
 

𝑢(𝑥, 𝑡) + ∫ ∑ 𝜆𝑘𝑢(𝑥𝑘, 𝜂)𝑛
𝑘=1 𝐾(𝑥, 𝑡, 𝜂)𝑑𝜂 = 𝐹1(𝑥, 𝑡)

𝑡

0
,              (8) 

 

где 
 

𝐾(𝑥, 𝑡, 𝜂) = ∫
1

𝑡−𝜂
𝑒1,𝛼

1,0 (−
𝑥−𝜉

(𝑡−𝜂)𝛼) 𝑑𝜉
𝑥

0
= (𝑡 − 𝜂)𝛼−1𝑒1,𝛼

1,𝛼 (−
𝑥−𝜉

(𝑡−𝜂)𝛼), 

 

𝐹1(𝑥, 𝑡) = ∫ ∫
𝑓(𝜉,𝜂)

𝑡−𝜂

𝑥

0
𝑒1,𝛼

1,0 (−
𝑥−𝜉

(𝑡−𝜂)𝛼
) 𝑑𝜉𝑑𝜂

𝑡

0
− ∫ 𝜏(𝜉)𝑡−𝛼𝑒1,𝛼

1,1−𝛼 (−
𝑥−𝜉

𝑡𝛼
) 𝑑𝜉

𝑥

0
. 
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Пусть в уравнении (8) ∑ 𝜆𝑘𝑢(𝑥𝑘, 𝑡)𝑛
𝑘=1 = 𝑈(𝑡). При 𝑥 → 𝑥𝑖, домножим (8)  на  𝜆𝑖 и сум-

мируем по  𝑖,  1 < 𝑖 < 𝑛. Тогда получим систему интегральных уравнений:  
 

𝑈(𝑡) + ∫ 𝑈(𝜂) ∑ 𝜆𝑖𝐾(𝑥𝑖, 𝑡, 𝜂)𝑛
𝑖=1 𝑑𝜂

𝑡

0
= ∑ 𝜆𝑖𝐹1(𝑥𝑖, 𝑡)𝑛

𝑖=1 .      (9) 
 

Уравнение (9) представляет собой интегральное уравнение Вольтерра 2-го рода с ядром 
∑ 𝜆𝑖𝐾(𝑥𝑖, 𝑡, 𝜂)𝑛

𝑖=1 , решение которого выписывается в виде 
 

𝑈(𝑡) = ∑ 𝜆𝑖𝐹1(𝑥𝑖, 𝑡)𝑛
𝑖=1 + ∫ 𝑅(𝑥𝑖, 𝑡, 𝜂) ∑ 𝜆𝑖

𝑛
𝑖=1 𝐹1(𝑥𝑖, 𝜂)𝑑𝜂

𝑡

0
,      (10) 

 

где 𝑅(𝑥𝑖, 𝑡, 𝜂) – резольвента ядра  
 

∑ 𝜆𝑖𝐾(𝑥𝑖, 𝑡, 𝜂)𝑛
𝑖=1 = ∑ 𝜆𝑖(𝑡 − 𝜂)𝛼−1𝑒1,𝛼

1,𝛼 (−
𝑥𝑖−𝜉

(𝑡−𝜂)𝛼
)𝑛

𝑖=1 . 

 

ОСНОВНОЙ РЕЗУЛЬТАТ РАБОТЫ 
 

В работе доказана следующая  

Теорема. Пусть 0 < 𝛼 < 1, 𝜏(𝑥) ∈ 𝐶[0,1], 𝜑(𝑡) ∈ С[0, 𝑇], 𝑅(𝑥𝑖, 𝑡, 𝜂), 𝐹1(𝑥𝑖 , 𝑡)      

и 𝑓(𝑥, 𝑡) ∈ 𝐶(𝛺̅), 𝑓(𝑥, 𝑡) удовлетворяет условию Гельдера по одной из переменных,          

и выполнено условие согласования  𝜑(0) = 𝜏(0). 

Тогда существует единственное регулярное решение уравнения (1) в области 𝛺,          

удовлетворяющее условиям (2) и (3), и имеет вид  
 

𝑢(𝑥, 𝑡) = ∫ 𝜏(𝜉)𝑡−𝛼𝑒1,𝛼
1,1−𝛼 (−

𝑥−𝜉

𝑡𝛼 ) 𝑑𝜉
𝑥

0
+. 

 

+ ∫ ∫ [𝑓(𝜉, 𝜂) + ∑ 𝜆𝑖
𝑛
𝑖=1 𝐹1(𝑥𝑖, 𝜂) + ∫ 𝑅(𝑥𝑖, 𝜂, 𝜒) ∑ 𝜆𝑖

𝑛
𝑖=1 𝐹1(𝜉𝑖, 𝜒)𝑑𝜒

𝜂

0
] ×

𝑥

0

𝑡

0
. 

 

×
1

𝑡−𝜂
𝑒1,𝛼

1,0 (−
𝑥−𝜉

(𝑡−𝜂)𝛼) 𝑑𝜉𝑑𝜂. 

 
ЗАКЛЮЧЕНИЕ 

 

Таким образом, в данной работе было рассмотрено нагруженное уравнение дробного          

порядка. Было установлено, что при соблюдении условий регулярности функций начальных   

и граничных условий существует единственное решение уравнения в области Ω. Решение 

было найдено путем редуцирования к системе интегральных уравнений Вольтерра 2-го рода. 

Доказаны существование и единственность решения поставленной задачи, а также       

получена явная его форма в виде интегральных выражений. Результаты имеют важное    

значение для математического моделирования популяционной динамики с учетом возраст-

ных аспектов и диффузионных эффектов с памятью, реализуемых через дробные произ-

водные. Полученные выводы расширяют теоретическую базу для анализа подобных       

дифференциальных уравнений и могут быть использованы для дальнейших исследований 

в области математической биологии и теории дифференциальных уравнений с памятью. 
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