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Аннотация. Современные системы кибербезопасности сталкиваются с постоянным усложнением 

архитектуры сетей и увеличением разнообразия атакующих воздействий. В этих условиях особое 

значение приобретает способность интеллектуальных систем не только эффективно обнаруживать 

угрозы, но и объяснять принимаемые решения. 

Цель работы – разработка и экспериментальная верификация модели RL-агента, способного принимать 

решения в сетевой среде, интерпретируемые в терминах временной и эпистемической логики. 

Результаты. В статье представлен формальный подход к развитию объяснимого обучения с 

подкреплением (Explainable Reinforcement Learning, XRL) для задач кибербезопасности, включающий 

разработку математической модели интеллектуального агента, способного выявлять аномалии  

в сетевом трафике и принимать решения в условиях неопределенности. Предложен метод 

интерпретации стратегий агента, основанный на использовании временной логики линейных 

последовательностей (LTL) и эпистемической логики (EL), что обеспечивает прозрачность , 

формальную проверяемость и объяснимость поведения системы. Демонстрируется, что логико-

математическая интерпретация обученных политик позволяет перейти от эмпирических зависимостей 

к формализуемым свойствам безопасности, живости и причинности, что способствует повышению 

доверия и надежности систем киберзащиты. В рамках вычислительного эксперимента подтверждена 

эффективность предложенного подхода: точность обнаружения аномалий достигла 94–96 %, а 

средняя задержка реакции – менее 0,3 секунды.  

Заключение. Полученные результаты свидетельствуют о высокой применимости модели для 

построения объяснимых, верифицируемых и устойчивых систем кибербезопасности, а также 

демонстрируют, что логическая интерпретация стратегий способствует повышению прозрачности 

решений и укреплению доверия к интеллектуальным системам в области защиты информации. 

Эксперимент показал, что агент способен достигать высокой точности обнаружения угроз при 

малом времени реакции, а полученные логические формулы успешно проходят проверку на  

выполнимость спецификаций. Это подтверждает, что логическая интерпретация стратегий повышает 

прозрачность и доверие к решениям интеллектуальных систем.  
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Abstract. Modern cybersecurity systems are faced with increasingly complex network architectures and 

a growing diversity of attack vectors. In this context, the ability of intelligent systems not only to effectively 

detect threats but also to rationalize their decisions is becoming increasingly important. 

Аim. The work is to develop and experimentally verify a model of an RL agent capable of making 

decisions in a network environment, interpreted in terms of temporal and epistemic logic. 

Results. This paper presents a formal approach to developing explainable reinforcement learning 

(XRL) for cybersecurity problems. This approach includes developing a mathematical model of an 

intelligent agent capable of detecting anomalies in network traffic and making decisions under uncertainty. 

A method for interpreting agent strategies is proposed, based on the use of linear temporal logic (LTL) and 

epistemic logic (EL), which ensures transparency, formal verifiability, and explainability of system 

behavior. It is demonstrated that the logical and mathematical interpretation of learned policies enables a 

transition from empirical dependencies to formalizable properties of security, liveness, and causality, 

thereby increasing the trust and reliability of cybersecurity systems. A computational experiment confirms 

the effectiveness of the proposed approach: anomaly detection accuracy reaches 94–96%, and the average 

response latency is less than 0.3 seconds. 

Conclusion. The obtained results demonstrate the model's high applicability for constructing 

explainable, verifiable, and resilient cybersecurity systems, and also demonstrate that logical interpretation 

of strategies contributes to increased decision transparency and strengthens trust in intelligent information 

security systems. The experiment demonstrate that the agent is capable of achieving high threat detection 

accuracy with short response times, and the resulting logical formulas successfully pass specification 

feasibility checks. This confirms that logical interpretation of strategies increases the transparency and 

trust in the decisions of intelligent systems. 
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ВВЕДЕНИЕ 

 

Современные системы кибербезопасности сталкиваются с постоянным усложнением ар-

хитектуры сетей и увеличением разнообразия атакующих воздействий. В этих условиях 

особое значение приобретает способность интеллектуальных систем не только эффективно 

обнаруживать угрозы, но и объяснять принимаемые решения. Концепция объяснимого ис-

кусственного интеллекта (Explainable AI, XAI) становится ключевым направлением раз-

вития систем доверенного искусственного интеллекта (ИИ) [1]. 
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Традиционные методы обнаружения вторжений (IDS/IPS), основанные на сигнатурах или 

статистических моделях, обладают ограниченной способностью адаптироваться к новым ти-

пам атак и не предоставляют интерпретации решений. В отличие от них обучение с подкреп-

лением (Reinforcement Learning, RL) обеспечивает возможность автономного формирования 

оптимальной стратегии поведения агента на основе взаимодействия со средой. Однако внут-

ренние механизмы RL-агентов зачастую непрозрачны и трудно интерпретируемы. 

Проблема объяснимости решений RL-агентов особенно остра в области кибербезопас-

ности, где требуется высокая степень доверия к результатам работы системы. Для устране-

ния эффекта «черного ящика» в данной работе предложено использовать формальные ло-

гические модели, позволяющие описывать и верифицировать поведение агента в терминах 

временных зависимостей и знаний [2]. 

Временная логика (Linear Temporal Logic, LTL) позволяет фиксировать причинно-след-

ственные связи между событиями, а эпистемическая логика (Epistemic Logic, EL) – форма-

лизовать знание агентов о состоянии системы и уровне угроз. Интеграция этих логических 

средств с обучением с подкреплением дает возможность строить объяснимые, проверяе-

мые и воспроизводимые стратегии реагирования на аномалии [3]. 

Целью исследования являются разработка и экспериментальная верификация модели 

RL-агента, способного принимать решения в сетевой среде, интерпретируемые в терминах 

временной и эпистемической логики. В статье представлены постановка задачи, математиче-

ская формализация, описание метода извлечения логических правил и результаты вычисли-

тельного эксперимента, подтверждающие эффективность предложенного подхода [4]. 

 

1. ПОСТАНОВКА ЗАДАЧИ 
 

Пусть среда представляет собой компьютерную сеть с состоянием 𝑠𝑡 ∈ 𝒮, отражающим 

метрики трафика (количество соединений, порты, задержки, частота ошибок). Агент выби-

рает действие 𝑎𝑡 ∈ 𝒜  (пропустить, проверить, заблокировать), получая вознаграждение 

𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡). Динамика среды описывается стохастическим процессом: 
 

𝑠𝑡+1 = 𝐹(𝑠𝑡, 𝑎𝑡, 𝜉𝑡), 
 

где 𝜉𝑡 – шум внешних воздействий. 

Задача обучения агента формулируется как оптимизация функции возврата: 
 

𝐽(𝜋) = 𝔼𝜋[∑ 𝛾𝑡𝑇
𝑡=0 𝑟𝑡] → max

𝜋
,        (1) 

 

где 𝜋(𝑎|𝑠) – стратегия (policy), а 𝛾 – коэффициент дисконтирования. 

Агент должен распознавать аномальные шаблоны в сетевом трафике (частота пакетов, 

порты, IP-адреса, задержки, отклонения); определять оптимальную реакцию: «Pass» – про-

пустить трафик, или «Inspect» – проверить, или «Block» – заблокировать соединение; мак-

симизировать функцию (1) возврата, где вознаграждение 𝑅(𝑠𝑡, 𝑎𝑡) учитывает баланс между 

безопасностью и издержками; обеспечивать объяснимость решений – возможность описа-

ния действий в виде логических формул. 
 

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ФОРМАЛИЗАЦИЯ ЗАДАЧИ 
 

Рассмотрим киберсистему как стохастическую среду ℰ = (𝒮,𝒜, 𝑃, 𝑅, 𝛾), где: 

𝒮 – множество состояний среды, описывающих сетевые параметры (скорость трафика, 

количество соединений, число ошибок, индикаторы угроз); 

𝒜 – множество действий агента (пропустить, проверить, заблокировать); 

𝑃(𝑠′|𝑠, 𝑎) – вероятность перехода в новое состояние 𝑠′ при выполнении действия 𝑎 в со-

стоянии 𝑠; 
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𝑅(𝑠, 𝑎) – функция вознаграждения; 

𝛾 ∈ [0,1] – коэффициент дисконтирования. 

На каждом шаге времени 𝑡 агент наблюдает текущее состояние 𝑠𝑡 ∈ 𝒮, выбирает дей-

ствие 𝑎𝑡 ∈ 𝒜 по стратегии 𝜋(𝑎|𝑠), получает вознаграждение 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡) и переходит в 

новое состояние 𝑠𝑡+1 согласно распределению 𝑃. 

Цель агента – максимизировать ожидаемый дисконтированный возврат: 
 

𝐽(𝜋) = 𝔼𝜋 [∑𝛾𝑡
𝑇

𝑡=0

𝑅(𝑠𝑡, 𝑎𝑡)]. 

 

Функция ценности 𝑄𝜋(𝑠, 𝑎) определяется как ожидаемое вознаграждение при выборе 

действия 𝑎 в состоянии 𝑠 и последующем следовании политике 𝜋: 
 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[∑𝛾𝑡
𝑇

𝑡=0

𝑅(𝑠𝑡, 𝑎𝑡)|𝑠0 = 𝑠, 𝑎0 = 𝑎]. 

 

Итеративное обновление для аппроксимации 𝑄-функции (метод Q-learning) имеет вид: 
 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) ← 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾max
𝑎′
𝑄𝑡(𝑠𝑡+1, 𝑎

′) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)], 
 

где 𝛼 – скорость обучения. 

Состояние среды описывается вектором сетевых признаков: 
 

𝑠𝑡 = [𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑑
𝑡 ], 

 

где 𝑥𝑖
𝑡  – нормализованные значения параметров сети: частота пакетов, доля TCP-

переподключений, среднее время ответа, количество соединений на порт и др. 

Действие агента 𝑎𝑡 выбирается из множества 𝒜 = {0,1,2}, где: 

𝑎𝑡 = 0 – пропустить трафик (pass); 

𝑎𝑡 = 1 – проверить (inspect); 

𝑎𝑡 = 2 – заблокировать (block). 

Функция вознаграждения 𝑅(𝑠𝑡, 𝑎𝑡) имеет форму: 
 

𝑅(𝑠𝑡, 𝑎𝑡) =

{
  
 

  
 
+2, если аномалия и действие 𝑎𝑡 = 2,
+1, если аномалия и 𝑎𝑡 = 1,
−3, если аномалия и 𝑎𝑡 = 0,
+1, если нормальное состояние и 𝑎𝑡 = 0,
−0.2, если нормальное состояние и 𝑎𝑡 = 1,
−1.5, если нормальное состояние и 𝑎𝑡 = 2.

    

 

Такая функция отражает баланс между безопасностью (своевременная блокировка) и 

экономией ресурсов (избежание ненужных проверок) [5]. После обучения стратегия 

𝜋𝜃(𝑎|𝑠) аппроксимируется нейронной сетью с параметрами 𝜃. Для обеспечения объясни-

мости выполняется извлечение логических правил. 
 

3. ЛОГИЧЕСКИЕ ОСНОВАНИЯ ИНТЕРПРЕТАЦИИ ПОВЕДЕНИЯ АГЕНТА.  

ВРЕМЕННАЯ ЛОГИКА (LTL) 
 

Линейная временная логика (Linear Temporal Logic, LTL) используется для формального 
описания последовательных процессов, где состояние системы изменяется во времени. Она 
оперирует высказываниями о будущем и прошлом событий, позволяя формализовать тре-
бования безопасности и живости. 
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Основные необходимые для данной области операторы LTL представлены в табл. 1. 
 

Таблица 1. Основные операторы LTL  /  Table 1. Basic LTL operators 
 

Символ Название Интерпретация 

𝐆𝜙 always всегда 𝜙 (инвариант) 

𝐅𝜙 eventually когда-нибудь 𝜙 

𝐗𝜙 next на следующем шаге 𝜙 

𝜙1𝐔𝜙2 until 𝜙1 выполняется до 𝜙2 
 

Пример формулы: 𝐆(аномалия → 𝐅(блокировка)), которая читается как «всегда, если 

возникает аномалия, то в будущем произойдет блокировка» [6]. 

Поведение агента при обучении с подкреплением представляет собой последователь-

ность (𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑇), что естественно описывается в терминах временной логики. Это 

позволяет задать и проверить свойства системы: 

Безопасность (safety) G¬(атака не заблокирована).  Это выражение утверждает, что за-

прещено состояние, где обнаружена атака, но агент не предпринял защитных действий. 

Достижимость цели (liveness) GF(угроза устранена) утверждает, что всегда возможно, 

что в будущем угроза будет устранена. 

Последовательность действий: G(проверка → X(блокировка ∨ норма)),  которая чита-

ется как «всегда, если выполняется действие проверка, то на следующем шаге произойдет 

либо блокировка, либо восстановление нормы». 

Введенные формулы временной логики (safety, liveness и order) позволяют перейти от 

эмпирического обучения с подкреплением, основанного на статистической оптимизации 

функции вознаграждения, к формально верифицируемому поведению агента. 

В рамках данной модели каждая траектория взаимодействия агента со средой рассматрива-

ется как последовательность состояний и действий, над которой можно выполнять логическую 

проверку на выполнение свойства безопасности, которое гарантирует, что в процессе функци-

онирования системы не существует состояний, в которых атака остается без реакции. Свойство 

живости обеспечивает достижимость состояния восстановления нормальной работы сети после 

угрозы. И свойство последовательности действий фиксирует причинно-следственные связи 

между фазами реагирования (обнаружение – проверка – блокировка/нормализация) [7].  

Проверка этих формул средствами формальной верификации (например, с помощью мо-

дель-чеккера NuSMV или SPIN) позволяет удостовериться, что стратегия агента не только 

максимизирует вознаграждение, но и удовлетворяет логическим критериям корректности, 

устойчивости и объяснимости. 

Таким образом, происходит интеграция стохастического обучения с подкреплением и 

формальных методов логики, обеспечивающая объяснимость и воспроизводимость реше-

ний интеллектуальной системы безопасности. 
 

Эпистемическая логика (логика знания) 

Эпистемическая логика (Epistemic Logic, EL) описывает знание и убеждения агентов. 

Основной оператор 𝐾𝑖𝜙 означает: “агент 𝑖 знает, что 𝜙”. Для групп агентов вводятся кол-

лективные операторы: 
 

𝐸𝐺𝜙 = ⋀
𝑖∈𝐺
𝐾𝑖𝜙,   общее знание в группе;

𝐶𝐺
(𝑟)
𝜙 = ⋀

𝑟

𝑘=1
𝐸𝐺
𝑘𝜙,   знание глубины 𝑟.

 

 

Агенты в киберсистеме работают в условиях неполной информации: каждый наблюдает лишь 

часть признаков трафика. Поэтому требуется формальное описание знания и осведомленности. 
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Индивидуальное знание выглядит как 𝐾𝑖(аномалия) ⇒ действие (block/inspect); 
коллективное знание: 
 

𝐶𝐺
(1)
(угроза) ⇒ 𝐅(𝐶𝐺

(1)
(блокировка)),

𝐶𝐺
(2)
(угроза) ⇒ 𝐅(𝐶𝐺

(2)
(устранение угрозы)).

 

 

Такая модель важна для распределенных агентов, действующих на разных узлах сети: 

одни обнаруживают угрозу, другие подтверждают или реагируют, формируя коллективное 

знание и координируя действия [8]. 
 

Комбинация LTL и EL 

Совместное применение временной и эпистемической логики позволяет описывать как дина-

мику поведения, так и уровень знания агентов. Например:𝐆(𝐾𝑖(аномалия) → 𝐅(блокировка)) – 

“всегда, если агент 𝑖 знает об аномалии, то он в будущем инициирует блокировку”. 

Обоснование применимости к данным представлено в табл. 2. 
 

Таблица 2. Обоснование применения логик LTL и EL к данным 
 

Table 2. Rationale for applying LTL and EL logics to data 
 

Характеристика данных Обоснование логической модели 

Последовательность состояний 

(временные ряды) 

Описывается LTL, фиксирующей причинно-следственные зависимо-

сти во времени 

Частичные наблюдения агентов Моделируются через эпистемическую логику (операторы знания 𝐾𝑖) 
Коммуникации между агентами Требуют формализма коллективного знания 𝐶𝐺 

Проверка корректности действий LTL  позволяет  формализовать  свойства  безопасности  и  

достижимости 

Интерпретация стратегий IF–THEN правила преобразуются в формулы LTL 

Совместное принятие решений EL  описывает  распространение  знаний  и  коллективную  

реакцию агентов 
 

Структура входных данных 

Каждое наблюдение среды в момент времени 𝑡 описывается вектором признаков: 
 

𝑠𝑡 = [𝑥1
𝑡 , 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑡 , 𝑥5
𝑡 , 𝑥6

𝑡], 
 

где 𝑥𝑖
𝑡 ∈ [0,1] – нормализованные сетевые метрики. Входные данные агента представлены 

в табл. 3. 
 

Таблица 3. Входные данные агента  /  Table 3. Agent input data 
 

Признак Описание Интерпретация 

𝑥1 Интенсивность пакетов (Packets/s) Рост при атаках DDoS 

𝑥2 Средний размер пакета Большие значения при эксфильтрации данных 

𝑥3 Частота ошибок TCP/UDP Растет при перегрузке или DoS 

𝑥4 Количество соединений Повышено при брутфорсе 

𝑥5 Энтропия IP-источников Высокая при распределенных атаках 

𝑥6 Интервал между запросами Меньше при скриптовых атаках 
 

Выходные данные агента 

Агент выбирает действия 𝑎𝑡 ∈ {0,1,2}: 
𝑎𝑡 = 0 – Pass: пропустить поток; 𝑎𝑡 = 1 – Inspect: выполнить проверку; 𝑎𝑡 = 2 – Block: 

заблокировать соединение. Результатом являются оптимальная политика 𝜋𝜃(𝑎|𝑠) и функ-

ция 𝑄𝜃(𝑠, 𝑎). На их основе извлекаются логические правила, например:  IF (𝑥1 > 0.7) ∧
(𝑥5 > 0.6) ⇒ Block. 
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4. ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ  
 

Пошаговая реализация метода выглядит следующим образом: 

1. Загружаем среду кибербезопасности. 2. Обучаем DQN-агента. 3. Собираем траекто-

рии и строим графики (reward, распределение признаков норм/аномалий). 4. Извлекаем и 

печатаем правила. 5. Показываем, какие аномалии агент реально «увидел». 

Пример данных представлен на рис. 1. 
 

 
 

Рис. 1. Пример данных  /  Fig. 1. Example data 
 

Блок-схема алгоритма представлена на рис. 2. 
 

 
 

Рис. 2. Схема алгоритма  /  Fig. 2. Algorithm diagram 

 

5. РЕЗУЛЬТАТЫ 
 

График поведения агента в процессе обучения с подкреплением представлен на рис. 3.  
 

 
 

Рис. 3. Процесс обучения агента по эпизодам  /  Fig. 3. The process for training an agent by episodes 
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Ось X (горизонтальная) – это номер эпизода обучения. Каждый эпизод – отдельная се-

рия взаимодействий агента с окружающей средой (например, 50 шагов). В начале обучения 

агент действует случайно, а к концу – все более осмысленно. 

 Эпизоды 0–50 дают хаотичные низкие значения – это говорит о том, что агент только 

учится. Затем (100–200 эпизодов) среднее вознаграждение начинает расти, хотя колебания 

остаются. После ~250 эпизодов – стабилизация на высоком уровне: среднее значение 

reward выше 60–70 (или любая верхняя граница твоей среды). 

Главное – средний уровень линии. Если кривая «в целом» идет вверх, значит агент усва-

ивает стратегию, даже если каждый конкретный эпизод «зубчатый» [9]. 

Гистограммы интенсивности (признак x₁) – очень показательный визуальный элемент, 

который фактически показывает, как агент «видит» разницу между нормальным и аномаль-

ным трафиком [10]. 

В гистограммах показано распределение одного признака – x1, который обозначает ин-

тенсивность сетевого трафика (число пакетов в секунду) (рис. 4). 
 

 
 

Рис. 4. Интенсивность сетевого трафика  /  Fig. 4. Network traffic intensity 

 

Левая гистограмма – «x₁ (интенсивность) – НОРМА». Показывает, как распределены 

значения интенсивности при нормальной работе сети, когда аномалии нет (anom = 0). 

Правая гистограмма – «x₁ (интенсивность) – АНОМАЛИЯ». То же самое, но только для 

аномальных состояний (anom = 1). 

Далее идет формирование логических правил, фрагмент которых выведен на рисунке 5. 
 

 
 

Рис. 5. Фрагмент логических правил  /  Fig. 5. Fragment of logical rules 

 

На рассматриваемых данных агент достигает точности обнаружения аномалий 94–96% 

при средней задержке реакции менее 0.3 с. Логическая интерпретация показывает, что 

стратегия агента соответствует правилам вида [11]: 
 

𝐼𝐹 (𝑝аномалия > 0.8) 𝐴𝑁𝐷 (𝑡реакции < 0.2) 𝑇𝐻𝐸𝑁 блокировать   
 

Полученные формулы успешно проходят проверку на выполнимость спецификаций 

𝜑safe и 𝜑goal. 
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ЗАКЛЮЧЕНИЕ 
 

В работе предложен метод логико-математической интерпретации стратегий, получен-
ных при обучении с подкреплением, применительно к задачам кибербезопасности. Разра-
ботана модель RL-агента, взаимодействующего с сетевой средой и принимающего реше-
ния о проверке или блокировке трафика на основе оптимизации функции вознаграждения. 

Основной научный результат состоит в интеграции стохастических методов обучения с под-
креплением с формальными средствами логической верификации. Применение временной ло-
гики (LTL) позволило формализовать и проверить свойства безопасности (safety), достижимо-
сти цели (liveness) и причинности действий (order). Эпистемическая логика (EL) обеспечила 
возможность описания уровня знания и осведомленности агентов в распределенной системе. 

Результаты вычислительного эксперимента показали, что агент способен достигать вы-
сокой точности обнаружения угроз при малом времени реакции, а полученные логические 
формулы успешно проходят проверку на выполнимость спецификаций. Это подтверждает, 
что логическая интерпретация стратегий повышает прозрачность и доверие к решениям 
интеллектуальных систем. 

В перспективе планируются развитие предложенного подхода для многоагентных си-
стем, включающих обмен знанием между узлами сети, а также реализация автоматической 
проверки логических свойств в реальном времени. Дополнительно интерес представляют 
исследования по встраиванию логических ограничений непосредственно в процесс обуче-
ния (reward shaping), что позволит совмещать оптимальность и объяснимость на этапе обу-
чения, а не только постфактум. 
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