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Аннотация. Статья посвящена сравнительному анализу классической производственной функции 

Кобба–Дугласа, трансцендентно-логарифмической ее спецификации и современных методов машинного 

обучения при моделировании производственных процессов.  

Цель настоящей работы – продемонстрировать, как усложнение истинной структуры 

производственной функции приводит к преимуществу методов машинного обучения по качеству 

прогноза по сравнению с классической функцией Кобба–Дугласа, сохраняя при этом возможность 

экономической интерпретации посредством методов объяснимого искусственного интеллекта. 

Материалы и методы исследования. На данных, включающих технологическую гетерогенность 

и нелинейные взаимодействия факторов, проведен вычислительный эксперимент, позволяющий 

объективно оценить точность различных подходов.  

Результаты. Показано, что жесткая степенная форма функции Кобба–Дугласа приводит к 

систематическим ошибкам в условиях сложной структуры производственных отношений, тогда 

как Translog-модель частично компенсирует эти ограничения за счет включения взаимодействий 

и квадратичных элементов. Методы машинного обучения (градиентный бустинг и многослойная 

нейронная сеть) демонстрируют наилучшие показатели качества прогноза благодаря способности 

аппроксимировать нелинейные зависимости и учитывать скрытые эффекты. В работе также 

обсуждаются возможности интерпретации моделей машинного обучения с использованием 

SHAP-методов, что обеспечивает восстановление экономически значимых зависимостей и  

повышает доверие к результатам.  

Заключение. Полученные результаты подтверждают целесообразность интеграции алгоритмов 

машинного обучения в современное эконометрическое моделирование производственных  

функций. 
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Abstract. The paper presents a comparative analysis of the classical Cobb-Douglas production function, 

its transcendental-logarithmic specification, and modern machine learning techniques used to model 

production processes. 

Aim. The paper aims to show how increasing the complexity of the real-world production function 

leads to the superiority of machine learning methods for forecasting quality compared to the traditional 

Cobb–Douglas function, while still allowing for economic interpretation through the use of explainable 

artificial intelligence techniques. 

Research materials and methods. A computational experiment was conducted with data including 

technological heterogeneity and nonlinear interactions between factors, ensuring an objective assessment 

of the accuracy of various approaches. 

Results. It has been shown that the strict form of the Cobb–Douglas production function leads to 

systematic errors when applied to complex production structures, while the Translog model partially 

compensates for these limitations by incorporating interactions between quadratic terms. Machine learning 

methods, such as gradient boosting and multilayer neural networks, demonstrate the best forecast quality 

due to their ability to approximate complex, nonlinear relationships and account for hidden factors. The 

paper also discusses the potential of using SHAP techniques to interpret machine learning models, which 

helps to recover economically significant relationships and increase confidence in the results. 

Conclusion: The outputs confirm the possibility of integrating machine learning algorithms into 

modern economic models of production functions. 
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ВВЕДЕНИЕ 

 

Очное моделирование производственных процессов является центральной задачей при-

кладной экономической теории и эконометрики. Производственные функции использу-

ются для анализа источников экономического роста, оценки эффективности фирм и отрас-

лей, измерения совокупной факторной производительности, а также для калибровки дина-

мических моделей общего равновесия. Исторически доминирующую роль играла произ-

водственная функция Кобба–Дугласа [1], сочетающая математическую простоту, удобство 

оценивания и прозрачную экономическую интерпретацию параметров. 

Современные экономические системы характеризуются высокой степенью гетерогенно-

сти, наличием нелинейных эффектов, комплементарностью факторов, сетевыми внешними 

эффектами и быстрыми технологическими сдвигами. В этих условиях жесткие предполо-

жения функции Кобба–Дугласа (постоянная эластичность замещения, степенная форма, 
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отсутствие взаимодействий более высокого порядка) оказываются чрезмерно ограничива-

ющими. Это стимулировало развитие более гибких спецификаций (CES [2], Translog [3]), а 

также применение методов машинного обучения (градиентный бустинг [4, 5], нейронные 

сети [6] и др.), способных аппроксимировать сложные нелинейные зависимости. 

Цель настоящей работы – продемонстрировать, как усложнение истинной структуры 

производственной функции приводит к преимуществу методов машинного обучения по 

качеству прогноза по сравнению с классической функцией Кобба–Дугласа, сохраняя при 

этом возможность экономической интерпретации посредством методов объяснимого ис-

кусственного интеллекта. 

 

КЛАССИЧЕСКАЯ ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ КОББА–ДУГЛАСА 
 

Классическая производственная функция Кобба–Дугласа для двух факторов производ-

ства – капитала 𝐾 и труда 𝐿 – имеет вид [1] 
 

𝑌 = 𝐴𝐾𝛼𝐿𝛽 , 
 

где 𝑌 – выпуск, 𝐴 > 0 – совокупная факторная производительность (СФП), 𝛼 и 𝛽 – эла-

стичности выпуска по капиталу и труду соответственно. В эмпирических исследованиях 

традиционно рассматривается стохастическая версия 
 

𝑌𝑖 = 𝐴𝐾𝑖
𝛼𝐿𝑖

𝛽
𝑒𝜀𝑖 , 

 

где индекс 𝑖 – нумерует наблюдения (фирмы, регионы, периоды), а 𝜀𝑖 – описывает мульти-

пликативный шок производительности. 

Логарифмирование приводит к линейной регрессии 
 

ln𝑌𝑖 = ln𝐴 + 𝛼ln𝐾𝑖 + 𝛽ln𝐿𝑖 + 𝜀𝑖, 
 

что обеспечивает простоту оценивания параметров методом наименьших квадратов и 

удобную интерпретацию, параметры 𝛼 и 𝛽 соответствуют эластичностям выпуска по фак-

торам, а их сумма характеризует отдачу от масштаба. 

Ключевые преимущества функции Кобба–Дугласа включают: 

• простоту оценивания, поскольку логарифмическая линеаризация приводит к стан-

дартной линейной регрессии; 

• интерпретируемость параметров, поскольку коэффициенты напрямую связаны с эла-

стичностями и распределением доходов между факторами; 

• математическую удобность, так как однородность функции и простая структура поз-

воляют легко включать ее в макроэкономические модели. 

Ключевые ограничения хорошо известны: 

• это постоянная эластичность замещения 𝜎 = 1 между капиталом и трудом, что не все-

гда соответствует наблюдаемым данным [2]; 

• жесткая степенная форма, не учитывающая более сложные взаимодействия и порого-

вые эффекты; 

• игнорирование технологической гетерогенности, потому как параметры предполага-

ются общими для всех наблюдений; 

• проблемы эндогенности факторов, приводящие к смещенности оценок. 

В связи с этим функция Кобба–Дугласа остается важным теоретическим ориентиром и 

базовой спецификацией для сравнительного анализа, но все чаще дополняется или заменя-

ется более гибкими моделями. 
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СОВРЕМЕННЫЕ ГИБКИЕ МОДЕЛИ ПРОИЗВОДСТВЕННЫХ ФУНКЦИЙ 
 

Трансцендентно-логарифмическая (Translog) функция 

Одним из классических обобщений функции Кобба–Дугласа является трансцендентно-

логарифмическая функция (Translog), задаваемая в логарифмах выпуска [3]: 
 

ln𝑌𝑖 = 𝛼0 + 𝛼𝐾ln𝐾𝑖 + 𝛼𝐿ln𝐿𝑖 +
1

2
𝛾𝐾𝐾(ln𝐾𝑖)

2 +
1

2
𝛾𝐿𝐿(ln𝐿𝑖)

2

+𝛾𝐾𝐿ln𝐾𝑖ln𝐿𝑖 + 𝜀𝑖.
 

 

Эта форма позволяет моделировать переменную эластичность замещения и взаимодей-

ствия факторов, оставаясь при этом линейной по параметрам и доступной для оценивания 

методами классической эконометрики. 

Методы машинного обучения как гибкие аппроксиматоры 

Методы машинного обучения рассматриваются как нелинейные регрессионные аппрок-

симаторы 
 

𝑌𝑖 = 𝑓(𝑋𝑖) + 𝜀𝑖, 
 

где 𝑋𝑖 – вектор признаков (факторов производства и дополнительных характеристик), а  

𝑓 – сложная нелинейная функция, задаваемая, например, ансамблем деревьев решений или 

нейронной сетью. 

В контексте моделирования производственных функций особенно популярны: гради-

ентный бустинг над деревьями решений (XGBoost [7], LightGBM [9] и др.), эффективно 

улавливающий взаимодействия и нелинейности, а также многослойные нейронные сети [9] 

(MLP), выступающие универсальными аппроксиматорами. 

Основные преимущества машинного обучения в данной задаче: 

1) высокая гибкость и способность аппроксимировать сложные нелинейные производ-

ственные отношения; 

2) автоматическое выявление взаимодействий между факторами; 

3) высокая точность предсказаний выпуска. 

С другой стороны, модели машинного обучения традиционно критикуются за недоста-

ток интерпретируемости. В последние годы эта проблема частично решается с помощью 

методов объяснимого ИИ, таких как SHAP [10] и LIME [11], позволяющих восстанавливать 

локальные и глобальные зависимости между факторами и выпуском. 

 

СИНТЕЗ ДАННЫХ И ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ 
 

Для иллюстрации преимуществ методов машинного обучения по сравнению с класси-

ческими спецификациями рассмотрим набор данных, имитирующий поведение фирм в од-

нородной отрасли. 

Рассмотрим три основных фактора производства – капитал 𝐾, труд 𝐿, материальные за-

траты 𝑀. Кроме того, введем бинарный индикатор технологического уровня 𝑇 ∈ {0,1}, где 

𝑇 = 1 соответствует более продвинутой технологии (например, внедрение цифровых ре-

шений и автоматизации). Пусть истинная (незаметная для исследователя) производствен-

ная функция в логарифмах имеет вид 
 

ln𝑌𝑖 =  𝛼0 + 𝛼𝐾ln𝐾𝑖 + 𝛼𝐿ln𝐿𝑖 + 𝛼𝑀ln𝑀𝑖

+𝛾𝐾𝐿ln𝐾𝑖ln𝐿𝑖 + 𝛾𝐿𝐿(ln𝐿𝑖)
2 + 𝛿𝑇𝑖 + 𝜀𝑖,

 

 

где 𝜀𝑖 ∼ 𝒩(0, 𝜎2) – случайный шум. Здесь присутствуют классические линейные эффекты 

факторов в логарифмах, взаимодействие капитала и труда ln𝐾𝑖ln𝐿𝑖, квадратичный эффект 
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труда (ln𝐿𝑖)
2, технологическая премия 𝛿 для фирм с 𝑇𝑖 = 1. Такая структура заведомо вы-

ходит за рамки классической функции Кобба–Дугласа, но может быть достаточно хорошо 

аппроксимирована Translog-функцией и тем более методами машинного обучения. 

Вычислительный эксперимент может быть построен следующим образом: 

𝑁  наблюдений (например, 𝑁 = 2000) с факторами 𝐾 , 𝐿 , 𝑀 , равномерно или логнор-

мально распределенными в реалистичных диапазонах; случайным образом присвоить фир-

мам технологический статус 𝑇; вычислить ln𝑌𝑖 по формуле, затем получить 𝑌𝑖 = exp(ln𝑌𝑖). 
Полученный набор данных структурно близок к реальным отраслевым выборкам, но 

позволяет точно контролировать истинную зависимость между факторами и выпуском. 

 

МЕТОДОЛОГИЯ ЭМПИРИЧЕСКОГО СРАВНЕНИЯ 
 

На представленных данных рассматриваются следующие модели: 

1. Кобб–Дуглас (КД) 
 

ln𝑌𝑖 = 𝛽0 + 𝛽𝐾ln𝐾𝑖 + 𝛽𝐿ln𝐿𝑖 + 𝛽𝑀ln𝑀𝑖 + 𝑢𝑖 . 
 

Это классическая производственная функция, предполагающая, что выпуск фирмы за-

висит от капиталa, труда и материальных затрат, а вклад каждого фактора выражается в 

виде степенных коэффициентов. 

Логарифмирование приводит к линейной модели. Модель предполагает, что взаимодей-

ствия факторов отсутствуют и эластичности постоянны для всех фирм. 

Ограничения – это отсутствие взаимодействий (например, синергии между K и L), нет 

нелинейных эффектов, эластичности постоянны для всех наблюдений, факторы действуют 

независимо. Это простая, но часто слишком ограниченная модель. 

2. Translog-спецификация 
 

ln𝑌𝑖 = 𝛽0 + 𝛽𝐾ln𝐾𝑖 + 𝛽𝐿ln𝐿𝑖 + 𝛽𝑀ln𝑀𝑖

+
1

2
𝛾𝐾𝐾(ln𝐾𝑖)

2 +
1

2
𝛾𝐿𝐿(ln𝐿𝑖)

2 +
1

2
𝛾𝑀𝑀(ln𝑀𝑖)

2

+𝛾𝐾𝐿ln𝐾𝑖ln𝐿𝑖 + 𝛾𝐾𝑀ln𝐾𝑖ln𝑀𝑖 + 𝛾𝐿𝑀ln𝐿𝑖ln𝑀𝑖 + 𝑢𝑖 .

 

 

Добавляет взаимодействия между факторами капитал × труд, капитал × материалы, труд × 

материалы и также квадратные эффекты. Эластичности больше не постоянны – они зависят 

от уровня факторов. Модель способна улавливать комплементарность, субституцию, поро-

говые эффекты, нелинейности. 

Это намного более гибкая, но все еще эконометрическая модель – параметры по-преж-

нему интерпретируемы. Ограничения модели: несмотря на гибкость эта форма все еще 

предопределена, при большом числе факторов число параметров сильно растет, чувстви-

тельна к мультиколлинеарности. 

3. Градиентный бустинг над деревьями решений (GBM), где на вход подаются 𝑙𝑛𝐾, 

𝑙𝑛𝐿, 𝑙𝑛𝑀, индикатор 𝑇 и, при необходимости, дополнительные трансформации. 

Это метод машинного обучения, который автоматически выявляет нелинейности, 

строит деревья, учитывающие разбиения по любым признакам, эффективно улавливает 

сложные взаимодействия факторов. Преимущества – высокая точность, устойчив к шуму, 

автоматически моделирует сложную производственную поверхность. Недостатки – пара-

метры не интерпретируемы напрямую. 

4. Многослойный персептрон (MLP) с несколькими скрытыми слоями и нелиней-

ными активациями. 



INFORMATICS AND INFORMATION PROCESSES 
 

 

122                                               News of the Kabardino-Balkarian Scientific Center of RAS   Vol. 27   No. 6   2025 

Во всех случаях зависимой переменной выступает либо 𝑙𝑛𝑌𝑖 , либо 𝑌𝑖 (для машинного 

обучения возможно использование обеих постановок, в эксперименте для сопоставимости 

удобно работать с логарифмом). Это метод машинного обучения, который автоматически 

выявляет нелинейности, строит деревья, учитывающие разбиения по любым признакам, 

эффективно улавливает сложные взаимодействия факторов. 
 

СХЕМА ЭКСПЕРИМЕНТА 
 

Синтезированные данные: 
 

 
 

Столбцы: K – капитал, L – труд, M – материалы, T – технологический уровень (0/1), Y – 

выпуск. Модель включает: степенные эффекты, взаимодействия факторов, квадратичные 

эффекты,  технологическую премию, стохастический шум. Для получения сопоставимых оце-

нок качества применяются стандартные процедуры валидации. Так, выборка разбивается на 

обучающую (70 %) и тестовую (30 %) части, параметры эконометрических моделей (КД, 

Translog) оцениваются методом наименьших квадратов на обучающей выборке, гиперпара-

метры моделей машинного обучения подбираются на кросс-валидации внутри обучающей 

выборки, для всех моделей вычисляются показатели качества на тестовой выборке. 

В качестве метрик используются корень из средней квадратической ошибки (RMSE) и 

коэффициент детерминации 𝑅2. 

 

РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА 
 

Приведенный ниже график хорошо показывает нелинейный рост выпуска при увеличении 

капитала и высокую вариативность, которая затем будет идеально уловлена моделями ML. 
 

 
 

Рис. 1. Диаграмма рассеяния / Fig. 1. Scatterplot 



ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ 
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Рисунок 1 иллюстрирует типичные результаты вычислительного эксперимента. Значе-

ния приведены для тестовой выборки. 
 

 
 

Рис. 2. Сравнение моделей / Fig. 2. Comparison of models 

 

На рисунке 2 синие точки соответствуют модели Кобба–Дугласа: самые большие откло-

нения, явно недоучитывает нелинейности; оранжевые – Translog: лучше, но все еще ощу-

тимые ошибки при экстремальных значениях; зеленые – GBM: практически идеальная ли-

ния, модель точно восстанавливает сложную производственную функцию. Как видно из 

рисунка 2, все модели демонстрируют достаточно высокое качество аппроксимации. При 

этом наблюдается четкая иерархия, а именно: функция Кобба–Дугласа обеспечивает при-

емлемое, но наименее точное описание данных; Translog-спецификация в силу своей гиб-

кости заметно улучшает качество прогноза; методы машинного обучения (градиентный бу-

стинг и нейронная сеть) достигают наивысших значений 𝑅2 и минимальных RMSE, прак-

тически полностью восстанавливая истинную зависимость. 

Следует подчеркнуть, что преимущество машинного обучения особенно проявляется в 

условиях, когда истинная производственная функция содержит нелинейные взаимодей-

ствия и эффект технологической гетерогенности, неявно зашитые в структуру данных. 
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