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Аннотация. Статья посвящена актуальным вопросам теории уравнений в частных производных, 
связанных с исследованием краевых задач для нагруженных параболических уравнений с оператором 
дробного интегро-дифференцирования, представляющих интерес как с точки зрения развития 
данной теории, так и в связи с многочисленными приложениями исследуемых задач. 

Цель исследования – доказательство однозначной разрешимости смешанной краевой задачи 
для разрывно-нагруженного параболического уравнения с дробной производной Римана – Лиувилля.  

Методы исследования. В работе использованы метод функции Грина, теория потенциала 
простого слоя, теория дробного исчисления. 

Результаты. В работе доказана однозначная разрешимость смешанной краевой задачи для 
нагруженного параболического уравнения дробного порядка. 

Заключение. Полученные результаты важны для развития теории краевых задач для уравнений 
в частных производных дробного порядка, в том числе нагруженных уравнений параболического 
типа, а также математического моделирования различных процессов и систем с распределенными 
параметрами, имеющих фрактальную структуру. 
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Abstract. This article is devoted to current issues in the theory of partial differential equations related 
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numerous applications. 
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Aim. The study is to prove the unique solvability of a mixed boundary value problem for a discontinu-

ously loaded parabolic equation with the Riemann–Liouville fractional derivative. 

Research methods. The study employs the Green's function method, simple layer potential theory, and 

fractional calculus theory. 

Results. This paper demonstrates the unique solvability of a mixed boundary value problem for a loaded 

fractional-order parabolic equation. 

Conclusion. The results obtained are significant for the development of the theory of boundary value 

problems for partial differential equations of fractional order, including loaded parabolic equations; they 

are also relevant for mathematical modeling of various processes and systems with distributed parameters 

and fractal structures. 
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ВВЕДЕНИЕ 

 

Исследование дифференциальных уравнений, лежащих в основе математических моде-
лей физико-биологических фрактальных процессов и связанных с ними задач, приводит к 
качественно новому классу дифференциальных и интегро-дифференциальных уравнений, 
получивших название нагруженных уравнений, представляющих большой теоретический 
и практический интерес. 

В монографии А. М. Нахушева [1] приведена подробная библиография по нагруженным 
уравнениям, в том числе по различным применениям нагруженных уравнений: как метод 
исследования задач математической биологии, математической физики, математического 
моделирования нелокальных процессов и явлений, механики сплошных сред с памятью. 

Представленная работа посвящена исследованию смешанной краевой задачи для раз-

рывно-нагруженного параболического уравнения с дробной производной. 

В области 𝐷 = {(𝑥, 𝑡): 𝑋1(𝑡) < 𝑥 < 𝑋2(𝑡), 0 < 𝑡 < 𝑇} рассматривается уравнение  
 

𝐿1𝑢 = {
𝜆1𝑢𝑥(𝑥0, 𝑡),  0 < 𝑡 ≤ 𝑇1,

𝜆2𝐷0𝑡
𝛼 𝑢(𝑋1(𝑡), 𝑡),  𝑇1 < 𝑡 < 𝑇,

                                                 (1) 

 

где  𝐿1𝑢 = 𝑢𝑡 − 𝑎
2𝑢𝑥𝑥, 𝜆𝑖 (𝑖 = 1, 2) – известные постоянные,  𝑋1(𝑡) < 𝑥0 < 𝑋2(𝑡), 𝐷0𝑡

𝛼  – опе-

ратор дробного интегро-дифференцирования Римана – Лиувилля порядка 𝛼 [2], 0 < 𝛼 < 1. 

Уравнение (1) относится к классу уравнений, предложенных в [3]. В работе [4] методом 

функции Грина исследована смешанная краевая задача для нагруженного уравнения теп-

лопроводности. Краевые задачи для уравнений в частных производных дробного порядка, 

включая диффузионно-волновые уравнения, рассмотрены в монографии [5]. Краевые за-

дачи для нагруженных и разрывно-нагруженных параболических уравнений исследованы 

в последние годы в работах [6–8].  

Нелокальные краевые задачи для линейных параболических уравнений рассматрива-

лись также в работах [9, 10]. 

В работах [11, 12] получены решения краевых задач для нагруженного диффузионно-

волнового уравнения с дробной производной, а также изучена краевая задача для обобщен-

ного уравнения переноса с дробной производной в полубесконечной области.  
Среди более поздних работ отметим также [13], в которой доказана однозначная разре-

шимость в пространстве Соболева нелокальной задачи с интегральными условиями для 
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параболического уравнения, а также работы [14, 15], посвященные исследованию разре-

шимости нелинейных обратных задач для параболических уравнений, в том числе вы-

рождающихся. 

Цель настоящего исследования – доказательство однозначной разрешимости смешан-

ной краевой задачи для разрывно-нагруженного параболического уравнения с дробной 

производной Римана – Лиувилля. 
 

СМЕШАННАЯ КРАЕВАЯ ЗАДАЧА 
 

Пусть  

𝐷1 = {(𝑥, 𝑡): 𝑋1(𝑡) < 𝑥 < 𝑋2(𝑡), 0 < 𝑡 < 𝑇1}, 
 

𝐷2 = {(𝑥, 𝑡): 𝑋1(𝑡) < 𝑥 < 𝑋2(𝑡), 𝑇1 < 𝑡 < 𝑇}. 
 

Задача 1. Найти регулярное в 𝐷1 и 𝐷2 решение 𝑢(𝑥, 𝑡) уравнения (1) из класса ℂ(𝐷̅), удо-

влетворяющее условиям 
 

𝑢(𝑥, 0) = 𝜑(𝑥), 𝑋1(0) < 𝑥 < 𝑋2(0),

𝑢𝑥(𝑋1(𝑡), 𝑡) = 𝑣1(𝑡), 𝑢(𝑋2(𝑡), 𝑡) = 𝑣2(𝑡),
                                       (2) 

 

где √𝑡𝑋𝑖(𝑡) ∈ ℂ[0, 𝑡], 𝑋𝑖(𝑡)  ∈ ℂ
1(0, 𝑡), i = 1, 2, причем  

 

𝜑(𝑥) ∈ ℂ1[𝑋1(0), 𝑋2(0)],  𝑣𝑖(𝑡) ∈ ℂ
1[0, 𝑡], 𝑖 =  1, 2,

𝑣1(0) = 𝜑′(𝑋1(0)),  𝑣2(0) = 𝜑(𝑋2(0)).
                                     (3) 

 

Введем обозначения: 
 

𝑢𝑥(𝑋2(𝑡), 𝑡) = 𝑓(𝑡),     lim
𝑥→𝑋1(𝑡)

𝑢(𝑥, 𝑡) = 𝑔(𝑡), 
 

𝑢𝑥(𝑥0(𝑡), 𝑡) = 𝑤(𝑡),     lim
𝑡→𝑇1

𝑢(𝑥, 𝑡) = 𝜓(𝑥), 
 

𝐺1(𝑥, 𝑡; 𝜉, 𝜂) = (2√𝜋𝑎(𝑡 − 𝜏))
−1

(𝑒
−
(𝑥−𝜉)2

4𝑎(𝑡−𝜏) − 𝑒
−
(𝑥+𝜉)2

4𝑎(𝑡−𝜏)),  

 

𝐺2(𝑥, 𝑡; 𝜉, 𝜂) = (2√𝜋𝑎(𝑡 − 𝜏))
−1

(𝑒
−
(𝑥−𝜉)2

4𝑎(𝑡−𝜏) + 𝑒
−
(𝑥+𝜉)2

4𝑎(𝑡−𝜏)) 

 

– функции Грина первой и второй краевых задач уравнения теплопроводности для полу-

прямой 𝑥 > 0 соответственно. 

Справедлива следующая теорема. 

Теорема 1. Задача (1), (2) при условиях (3) разрешима и притом единственным образом. 

Доказательство. Пусть функция 𝑢(𝑥, 𝑡) равномерно ограничена в 𝐷1, непрерывна в 𝐷1 

вместе с 𝑢𝑥, за исключением, быть может, точек (𝑋𝑖(0), 0), 𝑖 = 1, 2, и удовлетворяет в 𝐷1 

уравнению (1) при 0 < 𝑡 < 𝑇1. В силу свойств функции 𝑋𝑖(𝑡), 𝑖 = 1, 2 для 𝑢(𝑥, 𝑡) имеем 

следующее интегральное представление: 
 

𝑢(𝑥, 𝑡) = ∫ {[𝑎2𝑓(𝜏) + 𝑉2(𝜏)𝑋2(𝜏)]𝐺2(𝑥, 𝑡; 𝑋2(𝜏), 𝜏)

𝑡

0

− 𝑎2 [𝑉2(𝜏)
𝜕

𝜕𝜉
𝐺2(𝑥, 𝑡; 𝑋2(𝜏), 𝜏) − 𝑔(𝜏)

𝜕

𝜕𝜉
𝐺2(𝑥, 𝑡; 𝑋2(𝜏), 𝜏)]} 𝑑𝜏                       (4)

+ ∫ 𝜑(𝜉)

𝑋2(0)

𝑋1(0)

𝐺2(𝑥, 𝑡; 𝜉, 0)𝑑𝜉  +  𝜆1∫𝑤(𝜏)

𝑡

0

𝑑𝜏 ∫ 𝐺2(𝑥, 𝑡; 𝜉, 𝜏)

𝑋2(𝜏)

𝑋1(𝜏)

𝑑𝜉.                  
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Дифференцируя (4) по 𝑥 и учитывая, что 
𝜕𝐺1

𝜕𝑥
= −

𝜕𝐺2

𝜕𝜉
, 
𝜕𝐺1

𝜕𝜉
= −

𝜕𝐺2

𝜕𝑥
, получим  

 

𝑢𝑥(𝑥, 𝑡) = ∫ 𝜑′(𝜉)

𝑋2(0)

𝑋1(0)

𝐺1(𝑥, 𝑡; 𝜉, 0)𝑑𝜉 + 𝜆1∫𝑤(𝜏)

𝑡

0

𝑑𝜏 ∫ 𝐺1(𝑥, 𝑡; 𝜉, 𝜏)

𝑋2(𝜏)

𝑋1(𝜏)

𝑑𝜉 

+∫[𝑔′(𝜏)𝐺1(𝑥, 𝑡; 𝑋1(𝜏), 𝜏) − 𝑎
2𝑉1(𝜏)

𝜕

𝜕𝜉
𝐺1(𝑥, 𝑡; 𝑋1(𝜏), 𝜏) − 𝑉2

′(𝜏)𝐺1(𝑥, 𝑡; 𝑋2(𝜏), 𝜏)  

𝑡

0

 (5) 

                                +𝑎2𝑓(𝜏)
𝜕

𝜕𝜉
𝐺1(𝑥, 𝑡; 𝑋2(𝜏), 𝜏)]𝑑𝜏. 

 

Пользуясь теоремой о разрывах теплового потенциала двойного слоя [16], находим 
 

lim
𝑥→𝑋2(𝑡)−0

(−𝑎2∫𝑓(𝜏)
𝜕

𝜕𝜉
𝐺1(𝑥, 𝑡; 𝑋2(𝜏), 𝜏)

𝑡

0

𝑑𝜏) =
1

2
𝑓(𝑡) 

(6) 
 

− 𝑎2∫𝑓(𝜏)
𝜕

𝜕𝜉
𝐺1(𝑋2(𝑡), 𝑡; 𝑋2(𝜏), 𝜏)

𝑡

0

𝑑𝜏. 

 

Следовательно, имеем 
 

𝑓(𝑡) = 2{[𝑔(0) − 𝜑(𝑋1(0))]𝐺1(𝑋2(𝑡), 𝑡; 𝑋1(0), 0) + ∫ 𝜑′(𝜉)

𝑋2(0)

𝑋1(0)

𝐺1(𝑥, 𝑡; 𝜉, 0)𝑑𝜉

− ∫𝑔′(𝜏)𝐺1(𝑋2(𝑡), 𝑡; 𝑋1(𝜏), 𝜏)𝑑𝜏 − 𝑎
2∫𝑓(𝑡)

𝑡

0

𝜕

𝜕𝜉
𝐺1(𝑋2(𝑡), 𝑡; 𝑋1(𝜏), 𝜏)𝑑𝜏      (7)

𝑡

0

− 𝜆1∫𝑤(𝜏)

𝑡

0

𝑑𝜏 ∫
𝜕

𝜕𝜉
𝐺1(𝑋2(𝑡), 𝑡; 𝜉, 𝜏)

𝑋2(𝜏)

𝑋1(𝜏)

𝑑𝜉}.                                                         

 

Переходя к пределу в (4) при 𝑥 → 𝑋2(𝑡) + 0 для функции 𝑔(𝑡), получим 
 

𝑔(𝑡) =

= 2∫{−[𝑎2𝑉1(𝜏) + 𝑔(𝜏)𝑋1
′(𝜏)]𝐺2(𝑋1(𝑡), 𝑡; 𝑋1(𝜏), 𝜏) − 𝑎

2𝑔(𝜏)
𝜕

𝜕𝜉
𝐺2(𝑋1(𝑡), 𝑡; 𝑋1(𝜏), 𝜏)

𝑡

0

+ [𝑎2𝑓(𝜏)𝑉2(𝜏)𝑋2
′(𝜏)]𝐺2(𝑋1(𝑡), 𝑡; 𝑋2(𝜏), 𝜏)−𝑎

2𝑉2(𝜏)
𝜕

𝜕𝜉
𝐺2(𝑋1(𝑡), 𝑡; 𝑋2(𝜏), 𝜏)} 𝑑𝜏                (8)

+ ∫ 𝜑(𝜉)

𝑋2(0)

𝑋1(0)

𝐺2(𝑋1(𝑡), 𝑡; 𝜉, 0)𝑑𝜉 + 𝜆1∫𝑤(𝜏)

𝑡

0

𝑑𝜏 ∫ 𝐺2(𝑋1(𝑡), 𝑡; 𝜉, 𝜏)

𝑋2(𝜏)

𝑋1(𝜏)

𝑑𝜉.                               

 

Наконец, при 𝑥 → 𝑥0 из (4) для функции 𝑤(𝑡) имеем 
 

𝑤(𝑡) = ∫ 𝜑′(𝜉)

𝑋2(0)

𝑋1(0)

𝐺1(𝑥0, 𝑡; 𝜉, 0)𝑑𝜉 + 𝜆1∫𝑤(𝜏)

𝑡

0

𝑑𝜏 ∫ 𝐺1(𝑥0, 𝑡; 𝜉, 𝜏)

𝑋2(𝜏)

𝑋1(𝜏)

𝑑𝜉 + 
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+∫[𝑔′(𝜏)𝐺1(𝑥0, 𝑡; 𝑋1(𝜏), 𝜏) − 𝑎
2𝑉1(𝜏)

𝜕

𝜕𝜉
𝐺1(𝑥0, 𝑡; 𝑋1(𝜏), 𝜏) − 𝑉2

′(𝜏)𝐺1(𝑥0, 𝑡; 𝑋2(𝜏), 𝜏)𝑑𝜏   (9)

𝑡

0

+ 𝑎2𝑓(𝜏)
𝜕

𝜕𝜉
𝐺1(𝑥0, 𝑡; 𝑋2(𝜏), 𝜏)] 𝑑𝜏.  

 

Система (7)–(9) является системой интегральных уравнений Вольтерра второго рода. Из 

свойств функции Грина, а также условия (3) заключаем, что эта система имеет единствен-

ное решение в классе непрерывных функций. 

Покажем теперь, что 𝑢(𝑥, 𝑡) удовлетворяет уравнению 𝐿1𝑢=0 и начальному условию (2). 

Пользуясь равенством  
 

lim
𝑡→0+

1

2√𝜋𝑎𝑡
∫ 𝜑(𝜉)

𝛽

𝛼

𝑒
−
(𝑥−𝜉)2

4𝑎2𝑡 𝑑𝜉 =

{
 

 
0,   𝑥 ∈ [𝛼, 𝛽],

1

2
𝜑(𝑥),   𝑥 = 𝛼 или 𝑥 = 𝛽,

𝜑(𝑥),   𝑥 ∈ (𝛼, 𝛽),

                       (10) 

 

выполняющимся для любой непрерывной функции 𝜑(𝑥), находим, что 
 

lim
𝑡→0

𝑥→𝑋2(𝑡)

𝑢(𝑥, 𝑡) =
1

2
𝑉2(0) +

1

2
 𝜑(𝑋2(0)). 

 

Из 𝑉2(0) = 𝜑(𝑋2(0)) и (10) следует, что 𝑢(𝑥, 𝑡) непрерывна в точке (𝑋2(0)). Следова-

тельно, 𝑢 непрерывна в 𝐷1. Из способа построения (4) ясно, что  
 

lim
𝑥→𝑋2(𝑡)

𝑢𝑥(𝑥, 𝑡) =
1

2
𝑓(𝑡) + 𝐴(𝑋2(𝑡), 𝑡),                                        (11) 

 

где 𝐴 – правая часть (4). Сопоставляя теперь (11) и (5), имеем, что  
 

lim
𝑥→𝑋2(𝑡)

𝑢𝑥(𝑥, 𝑡) = 𝑓(𝑡). 
 

Аналогично 
 

lim
𝑡→0

𝑥→𝑋2(𝑡)

𝑢𝑥(𝑥, 𝑡) =𝜑
′(𝑋2(0)),     lim𝑡→0

𝑥→𝑋1(𝑡)

𝑢𝑥(𝑥, 𝑡) =𝜑
′(𝑋1(0)). 

 

Далее, так как  

𝑓1(0) = 𝜑′(𝑋1(0)), 
 

то 

lim
𝑥→𝑋1(𝑡)

𝑢𝑥(𝑥, 𝑡) =
1

2
𝑓1(𝑡) + 𝐴(𝑋1(𝑡), 𝑡).                                         (12) 

 

Отсюда при 𝑡 → 0: 

lim
𝑡→0

𝑥→𝑋1(𝑡)

𝑢𝑥(𝑥, 𝑡) =
1

2
𝑓1(0) +

1

2
𝜑′(𝑋1(0)), 

 

а это в силу (12) означает, что  
 

lim
𝑡→0

𝑥→𝑋1(𝑡)

𝑢𝑥(𝑥, 𝑡) =𝜑′(𝑋1(0)). 
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Аналогично 

lim
𝑡→0

𝑥→𝑋2(𝑡)

𝑢𝑥(𝑥, 𝑡) =𝜑′(𝑋2(0)). 

 

Покажем выполнимость условий (3). Из непрерывности 𝑢(𝑥, 𝑡) и 𝑢𝑥(𝑥, 𝑡) следует при-

менимость к 𝑢(𝑥, 𝑡) интегрального представления (4). 

Положим 
 

lim
𝑥→𝑋1(𝑡)+0

𝑢𝑥(𝑥, 𝑡) =𝑉1
0(𝑡),    lim

𝑥→𝑋1(𝑡)−0
𝑢(𝑥, 𝑡) =𝑉2

0(𝑡). 
 

Тогда получим 
 

𝑢(𝑥, 𝑡) = ∫[𝑎2𝑓(𝜏) + 𝑉2
0(𝜏)𝑋2

′(𝜏)]𝐺2(𝑥, 𝑡; 𝑋2(𝜏), 𝜏)𝑑𝜏

𝑡

0

 

 

−∫[𝑎2𝑉1
0(𝜏) + 𝑔(𝜏)𝑋1

′(𝜏)]

𝑡

0

𝐺2(𝑥, 𝑡; 𝑋1(𝜏), 𝜏)𝑑𝜏 − 𝑎
2∫𝑉2

0(𝜏)

𝑡

0

𝜕

𝜕𝜉
𝐺2(𝑥, 𝑡; 𝑋2(𝜏), 𝜏)𝑑𝜏 

(13) 

+𝑎2∫𝑔(𝜏)

𝑡

0

𝜕

𝜕𝜉
𝐺2(𝑥, 𝑡; 𝑋1(𝜏), 𝜏)𝑑𝜏 + ∫ 𝜑(𝜉)

𝑋2(0)

𝑋1(0)

𝐺2(𝑥, 𝑡; 𝜉, 0)𝑑𝜉 

 

+𝜆1∫𝑤(𝜏)

𝑡

0

𝑑𝜏 ∫ 𝐺2(𝑥, 𝑡; 𝜉, 𝜏)

𝑋2(𝜏)

𝑋1(𝜏)

𝑑𝜏.  

 

Положим  
 

𝑧1(𝑡) =  𝑉1(𝑡) − 𝑉1
0(𝑡),      𝑧2(𝑡) =  𝑉2(𝑡) − 𝑉2

0(𝑡). 
 

Вычитая (13) из (5), получим 
 

0 = ∫ {𝑧2(𝜏) [𝑋2
′(𝜏) − 𝑎2

𝜕

𝜕𝜉
] 𝐺2(𝑥, 𝑡; 𝑋2(𝜏), 𝜏) − 𝑎

2𝑧1(𝜏)𝐺2(𝑥, 𝑡; 𝑋1(𝜏), 𝜏)}

𝑡

0

𝑑𝜏.   (14) 

 

При 𝑥 → 𝑋2(𝑡) − 0, пользуясь (6), найдем 
 

𝑧2(𝑡) = 2∫{𝑎
2𝑧1(𝜏)𝐺2(𝑋2(𝑡), 𝑡; 𝑋1(𝜏), 𝜏)

𝑡

0

 

(15) 

+𝑧2(𝜏) [𝑋2
′(𝜏) + 𝑎2

𝜕

𝜕𝜉
]𝐺2(𝑋2(𝑡), 𝑡; 𝑋2(𝜏), 𝜏)} 𝑑𝜏. 

 

Далее, дифференцируя (14) по 𝑥 и переходя к пределу при 𝑥 → 𝑋1(𝑡) + 0, аналогично 

получим 
 

𝑧1(𝑡) = −2∫{𝑎
2𝑧1(𝜏)

𝜕

𝜕𝜉
𝐺1(𝑋1(𝑡), 𝑡; 𝑋1(𝜏), 𝜏) + 𝑧2(𝜏)

𝜕

𝜕𝜏
𝐺1(𝑋1(𝑡), 𝑡; 𝑋2(𝜏), 𝜏)} 𝑑𝜏.

𝑡

0

     (16) 

 

Так как 𝑥2 − 𝑥1 ≠ 0, то второе слагаемое в (16) – ограниченное. Следовательно, система 

(15), (16) является однородной системой интегральных уравнений Вольтерра второго рода. 
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Таким образом, 𝑧1 ≡ 𝑧2 ≡ 0, что и требовалось доказать. Из единственности решения си-

стемы интегральных уравнений (7)–(9) следует единственность решения исходной задачи.  

В области 𝐷2 мы имеем следующее интегральное представление: 
 

𝑢(𝑥, 𝑡) = ∫ {[𝑎2𝑓(𝜏) + 𝑉2(𝜏)𝑋2(𝜏)]𝐺2(𝑥, 𝑡; 𝑋2(𝜏), 𝜏)

𝑡

𝑇1

− 𝑎2 [𝑉2(𝜏)
𝜕

𝜕𝜉
𝐺2(𝑥, 𝑡; 𝑋2(𝜏), 𝜏) − 𝑔(𝜏)

𝜕

𝜕𝜉
𝐺2(𝑥, 𝑡; 𝑋1(𝜏), 𝜏)]} 𝑑𝜏 

(17) 

+ ∫ 𝑢(𝜉, 𝑇1)

𝑋2(𝑇1)

𝑋1(𝑇1)

𝐺2(𝑥, 𝑡; 𝜉, 𝑇1)𝑑𝜉 

 

+𝜆1 ∫𝐷0𝜏
𝛼 𝑢(𝑋1(𝜏), 𝜏)

𝑡

𝑇1

𝑑𝜏 ∫ 𝐺2(𝑥, 𝑡; 𝜉, 𝜏)

𝑋2(𝜏)

𝑋1(𝜏)

𝑑𝜉. 

 

Рассмотрим интеграл 
 

𝐼1 = 𝜆1 ∫𝐷0𝜏
𝛼 𝑢(𝑋1(𝜏), 𝜏)

𝑡

𝑇1

𝐺2(𝑥, 𝑡; 𝜉, 𝜏)𝑑𝜏. 

 

При 𝛼 < 0 
 

𝐼1 =
𝜆1

Γ(−𝛼)
∫(𝑡 − 𝜏1)

−𝛼𝑗−1𝑢(𝑋1(𝜏), 𝜏)

𝑡

𝑇1

𝑑𝜏1∫𝐺2
0

𝜏

𝑡

(𝑥, 𝑡; 𝜉, 𝜏)(𝑡 − 𝜏)−
1
2 𝑑𝜏 

 

=
𝜆1

Γ(−𝛼)
∫𝑢(𝑋1(𝜏1), 𝜏1)(𝑡 − 𝜏2)

−𝛼−
1
2

𝑡

𝑇1

𝑑𝜏1∫𝐺2
0 (𝑥, 𝑡; 𝜉, 𝜏1𝑑𝜏

1

0

 

 
 

+ (𝑡 − 𝜏1)𝑦) 𝑦−1−𝛼(1 − 𝑦)−
1

2 𝑑𝑦, 
 

а при 0 < 𝛼 <
1

2
 

 

𝐼1 = −
1

Γ(1 − 𝛼)
∫𝑢(𝑋1(𝜏1), 𝜏1)

𝑡

𝑇1

𝑑𝜏1
𝑑

𝑑𝜏1
(𝑡 − 𝜏1)

1
2
−𝛼∫𝐺2

0

1

0

(𝑥, 𝑡; 𝜉, 𝜏1 + (𝑡 − 𝜏1)𝑦)𝑦
−𝛼(1 − 𝑦)−

1
2 𝑑𝑦, 

 

где 

𝐺2
0(𝑥, 𝑡; 𝜉, 𝜏1) = (𝑡 − 𝜏1)

1
2𝐺2(𝑥, 𝑡; 𝜉, 𝜏). 

 

При 𝑥 → 𝑋1(𝑡) из (17) имеем 
 

𝑢(𝑋1(𝑡), 𝑡) = ∫
𝐾(𝑡, 𝜏)𝑢(𝑋1(𝜏), 𝜏)

(𝑡 − 𝜏)𝛼+1/2

𝑡

𝑇1

𝑑𝜏 + 𝐹(𝑡),                                   (18) 
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где 

𝐹(𝑡) = ∫ {[𝑎2𝑓(𝜏) + 𝑉2(𝜏)𝑋2(𝜏)]𝐺2(𝑋1(𝑡), 𝑡; 𝑋2(𝜏), 𝜏)

𝑡

𝑇1

− 𝑎2 [𝑉2(𝜏)
𝜕

𝜕𝜉
𝐺2(𝑥, 𝑋1(𝑡); 𝑋2(𝜏), 𝜏) − 𝑔(𝜏)

𝜕

𝜕𝜉
𝐺2(𝑋1(𝑡), 𝑡; 𝑋1(𝜏), 𝜏)]} 𝑑𝜏

+ ∫ 𝑢(𝜉, 𝑇1)

𝑋2(𝑇1)

𝑋1(𝑇1)

𝐺2(𝑋1(𝑡), 𝑡; 𝜉, 𝑇1)𝑑𝜉, 

 

при 𝛼 < 0 
 

𝐾(𝑡, 𝜏) =
𝜆1

Γ(−𝛼)
∫ ∫ 𝐺2

0(𝑋1(𝑡), 𝑡; 𝜉, 𝜏1 + (𝑡 − 𝜏1)𝑦)𝑦
−1−𝛼(1 − 𝑦)−

1
2 𝑑𝜉

𝑋2(𝜏)

𝑋1(𝜏)

1

0

𝑑𝑦, 

 

при 0 < 𝛼 <
1

2
 

 

𝐾(𝑡, 𝜏) =
𝜆1(𝑡 − 𝜏)

𝛼+1/2

Γ(1 − 𝛼)

𝑑

𝑑𝜏
(𝑡 − 𝜏)

1
2
−𝛼∫𝐺2

0

1

0

(𝑥, 𝑡; 𝜉, 𝜏 + (𝑡 − 𝜏)𝑦)𝑑𝜉. 

 

Пользуясь (18), а также соотношениями (7), (8) для определения 𝑓(𝑡) и 𝑔(𝑡) в области 𝐷2, 

получим единственное решение поставленной задачи в области 𝐷2. 

 

ЗАКЛЮЧЕНИЕ 
 

Таким образом, в данной работе доказана однозначная разрешимость смешанной крае-

вой задачи для нагруженного параболического уравнения дробного порядка. Полученные 

результаты важны для развития теории краевых задач для уравнений в частных производ-

ных дробного порядка, в том числе нагруженных уравнений параболического типа, а также 

математического моделирования различных процессов и систем с распределенными пара-

метрами, имеющих фрактальную пространственно-временную структуру. 
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